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ABSTRACT: We study N/ =4 SYM on R x S? and theories with 16 supercharges arising
as its consistent truncations. These theories include the plane wave matrix model, N’ = 4
SYM on R x S? and N' =4 SYM on R x S3/Z;, and their gravity duals were studied by
Lin and Maldacena. We make a harmonic expansion of the original N' =4 SYM on R x S3
and obtain each of the truncated theories by keeping a part of the Kaluza-Klein modes.
This enables us to analyze all the theories in a unified way. We explicitly construct some
nontrivial vacua of N' =4 SYM on R x S§2. We perform 1-loop analysis of the original and
truncated theories. In particular, we examine states regarded as the integrable SO(6) spin
chain and a time-dependent BPS solution, which is considered to correspond to the AdS
giant graviton in the original theory.
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1. Introduction

It is important to collect various examples of the gauge/gravity correspondence in order
to elucidate how universal this phenomena is. Recently this direction has been pursued
successfully by Lin and Maldacena [f[. They gave a general method for constructing the
gravity solutions dual to a family of theories with 16 supercharges. All these theories share
the common feature that they have a mass gap, a discrete spectrum of excitations and a
dimensionless parameter, which connect weak and strong coupling regions. This method
is an extension of the so-called bubbling AdS geometries [P]-fl]. The symmetry algebra of
some of the theories is SU(2[4) supergroup, while the other theories have SO(4) x SO(4)
symmetry. The theories with the SU(2[4) symmetry arise as consistent truncations of
N = 4 super Yang Mills (SYM) on R x S? as explained below. They include the plane
wave matrix model [J], N'=4 SYM on R x S? [f] and N’ =4 SYM on R x S3/Z.

N =4 SYM on R x 83 has the superconformal symmetry SU(2,2[4), whose bosonic
subgroup is SO(2,4) x SO(6), where SO(2,4) is the conformal group in 4 dimensions and
SO(6) is the R-symmetry. SO(2,4) has a subgroup SO(4) that is the isometry of the S3
on which the theory is defined. SO(4) is identified with SU(2) x SU(2), where we marked
one of two SU(2)’s with a tilde to focus on it. By quotienting the original N' =4 SYM on
R x S3 by various subgroups of SU(2), one obtains the above mentioned theories whose
symmetry algebra is SU(2[4). Quotienting by full SU(2), U(1) and Zj, give rise to the plane
wave matrix model, A" =4 SYM on R x S? and N' =4 SYM on R x S3/Z}, respectively.
Indeed, the consistent truncation to the plane wave matrix model was first found in [ff].
The original N’ = 4 SYM on R x S3 has a unique vacuum, while the truncated theories
have many vacua. The method by Lin and Maldacena give in principle gravity solutions
that describe these vacua and fluctuations around them, and they indeed obtained a few
explicit solutions [.

It is obviously relevant to study the dynamics of the above truncated theories and
compare the results with those obtained on the gravity side. Indeed, some studies on the
dynamics of the plane wave matrix model have already been carried out [BJ—[f]. It should
also be worthwhile to study the original N = 4 SYM on R x S? itself [[[l-[Ld], although
it is believed to be equivalent to N’ = 4 SYM on R* at conformal point, which is much
easier to analyze. The reasons are as follows. First, the pp-wave limit on the gravity side
is taken for AdSs x S° in the global coordinates, and the boundary of AdSs is R x S3. The
holography in the pp-wave limit could, therefore, be well understood in A’ = 4 SYM on
R x S3. Next, the original theory has a classical time-dependent BPS solution, which is
considered to correspond to the AdS giant graviton [T, ffl. The quantum dynamics of the
AdS giant graviton is expected to be understood by examining the quantum fluctuation
around this classical solution. The classical solution is, however, mapped to a classical
vacuum solution of A = 4 SYM on R* that breaks the conformal symmetry, so that the
equivalence between N' = 4 SYM on R x S and R* does not seem to hold in this case.
Third, one can consider N’ =4 SYM on S! x S3, which is the finite temperature version
of N =4 SYM on R x S? and is not equivalent to ' = 4 SYM on R*. This theory is
known to show a phase transition [[I3-[[4], which should correspond to the thermal phase



transition between the AdS space and the AdS black hole [[5§. The study of N' =4 SYM
on R x S3 serves as a preparation for that of this theory.

In this paper, we study the dynamics of the original ' =4 SYM on R x S3 and the
truncated theories, by making a harmonic expansion of the original theory on S3. We
obtain each of the truncated theories by keeping a part of the Kaluza-Klein (KK) modes
of the original theory. This enables us to analyze all of the original and truncated theories
in a unified way.

In section 2, we review basic properties of N’ = 4 SYM on R x S3. In section 3, we
develop the harmonic expansion on S3. In particular, we obtain a new formula for the
integral of the product of three harmonics, which is used in the following sections. In
section 4, by applying the results of section 3, we carry out a harmonic expansion of N' = 4
SYM on R x S? including all interaction terms. The result in this section is an extension
of the work [[i], where the authors carried out the mode expansion of the free part in detail
and analyzed interactions between the lowest modes needed for the truncation to the plane
wave matrix model.

In section 5, we describe the consistent truncations of the original ' = 4 SYM on
R x 83 to the theories with SU(2|4) symmetry. We realize each quotienting by keeping a
part of the KK modes of the original theory. We verify that quotienting by U(1) indeed
yields N = 4 SYM on R x S? by comparing the KK modes we kept with the KK modes
of N'=4 SYM on R x S?. We explicitly construct some of the nontrivial vacua of N' = 4
SYM on R x S? in terms of the KK modes.

In section 6, we first calculate 1-loop diagrams in the original theory. We introduce
cut-offs for loop angular momenta and see that this cut-off scheme yield correct coefficients
of logarithmic divergences, which are consistent with the Ward identities and the vanishing
of the beta function. We next determine some counter terms in the original theory and the
truncated theories in the trivial vacuum by using the non-renormalization of energy of the
BPS states. This reveals that the states built by the sequence of the scalars in both the
original theory and the truncated theories in the trivial vacuum are mapped to the same
integrable SO(6) spin chain.

In section 7, we examine the time-independent BPS solution in the original and trun-
cated theories, which is considered to correspond to the AdS giant graviton in the original
theory. We see that the 1-loop effective action around this solution vanishes.

Section 8 is devoted to summary and discussion. In appendix A, we gather some
formulae concerning the representation of SU(2). In appendix B, we describe the vertex
coefficients which are used in representing the interaction terms by the modes. In appendix
C, we describe some properties of the spherical harmonics on S?2, which are used in section
5. In appendix D, we list the 1-loop diagrams and the divergent parts of those diagrams.
In appendix E, we give the expressions for the 1-loop effective action around the time
dependent BPS solution in the truncated theories.

2. Basic properties of ' =4 SYM on R x S

In this section, we review the basic properties of A = 4 SYM on R x S2 [[]-[[[d]. We



restrict ourselves to the U(IV) gauge group and the 't Hooft limit throughout this paper.
However, the generalization to other gauge groups that allow the ’t Hooft limit is easy.
We follow the notation of [0 with slight modification. We set the radius of S? at one.

Borrowing the ten-dimensional notation, we can write down the action as follows:
1 1 1 1
S=—— [d'zeTr (——FabF“b — =Dy X, D" Xy, — —RX?,
(i 4 2 12
|~ 1< 1
—%)\F“DQA — SAI™ X0, ] + Z[Xm,XnP) . (2)

where a and b are local Lorentz indices and run from 0 to 3, and m runs from 4 to 9. I'¢
and I are the 10-dimensional gamma matrices, which satisfy

{re, 18y = 2% {I™ ™} = 26™", (2.2)

where n® = diag(—1,1,1,1). A is the Majorana-Weyl spinor in 10 dimensions. e is the
pon I x S3. R is the scalar curvature of S3 which is equal

to 6. The field strength and the covariant derivatives take the form

determinant of the vierbein e

Fab = VaAb - vbAa - i[Am Ab] = €5GEFMV7
DaXm = vaXm - Z'[AaaXm],
Do) = Vo — i[Aa, A, (2.3)

where
C 1 C
VoA = e (0, Ay + Wyp Ac)y VaXim =€0, X, Vod=el (0N + sz TpeN), (2.4)

and wzb is the spin connection on R x S? determined by de® + wh A e’ =0.

The classical action (R.1) with arbitrary gauge group has the superconformal symmetry
SU(2,2]|4). This symmetry is preserved at the quantum level. This is ensured by the
following two facts. One is that the Weyl anomaly for the gy ;s = 0 was shown to vanish
on R x S3 [[f]. The other is that the beta function vanishes for arbitrary gy s because it
only reflects the short distance structure of the theory and indeed vanishes on R*. In what
follows, we describe the transformation laws of the fields under each element of SU(2,2|4)
and see that the action (R.I]) is invariant under such transformations.

First, let us see the conformal invariance of the action. If the metric and the vierbein
were allowed to vary, the action would possess the Weyl invariance,

owAy, = —aAy, wXm=-—-0Xpn, OowA= —;a)\, dwey, = ael, (2.5)
the diffeomorphism invariance,
0eAq =104 AG, 0¢ X = E10, X0, A =EHOLN,
Beel, = /9,6 + VLVl (2.6)
and the local Lorentz invariance,
LAy — by 81Xy =0, P\ = igabra%, bt = e%eb. (2.7)



Let & be a conformal Killing vector satisfying
1 C
Va&y + Vica = 5 Vel ab, (2.8)
and set o = —ivaga and eqp = EFwpay + %(Va&, — V&,). Then,
(0 + dw +dL)ey, = 0. (2.9)

The action is, therefore, invariant under the conformal transformation . = d¢ + dw + 9y,
where the metric and the vierbein are fixed. The conformal transformation act on each

field as follows:
ScAa = E"VpAq + V£ Ay,
1
6cXm = éavaXm + ZvagaXma

1
deA = VA + Zvafbl““b)\ + gvagax (2.10)

It is often convenient to rewrite the action in the the SU(4) symmetric form. The
10-dimensional Lorentz group has been decomposed as SO(9,1) D SO(3,1) x SO(6). We
identify SO(6) with SU(4). We use A, B = 1,2, 3,4 as the indices of 4 in SU(4) while we
have used m,n =4,---,9 as the indices of 6 in SO(6). The SO(6) vector, 6, corresponds
to the antisymmetric tensor of 4 in SU(4). The SO(6) and SU(4) basis are related as

1 . )
Xia = 5(Xiys +iXive) (1=1,2,3),

1

Similar identities hold for the gamma matrices:
. 1 . .
4 = 5(rl+3 —iT0), ete. (2.12)

The 10-dimensional gamma matrices are decomposed as

~AB

0 —
M“=7"®ls, M=y <pAB % ) S (2.13)

where 4% is the 4-dimensional gamma matrix, satisfying {y%,7°} = 2n®, and ~v5 = 74! x
723, TAB satisfies {TAB, TCPY = ¢ABCD and pAB and AP are defined by

("8)op = 6455 — 58, (715)°P = ABOP, (214)

The charge conjugation matrix and the chirality matrix are given by

01 1, O
Cio=C1® o IS R SRR R : (2.15)
14 O 0 —14



where (™)1 = —Cfolfa’mClo and Cy is the charge conjugation matrix in 4 dimensions.
The Majorana-Weyl spinor in 10 dimensions is decomposed as

)\A
A=Tp\= \ o, (2.16)

—A
where A_ 4 is the charge conjugation of )\f:
Aa= A =00, wAr = £ (2.17)

The action is rewritten in terms of SU(4) symmetric notation as follows:

2
9y m

1 1 1 1 _
S=— [dzeTr (—ZFabF“b — 51)a)(,431)axf“3 — §XABXAB — i A7 D\
_ _ 1
XA XA N_p] = M[Xap, A + Z[XABaXCD][XABaXCD]> ;
(2.18)

It is easy to see that the action (R.18) is invariant under the SU(4) R-symmetry
SpXAB = iTH XOP TR XAC SpA =T, SpA_a = —id_pT8B,, (2.19)

where TAB is a hermitian traceless matrix.
Finally, we consider the superconformal symmetry. The conformal Killing spinor equa-
tion on R x S2 takes the form

1
Viaier = i§7a706+, V5€+ = €. (2.20)

A general solution to (R.20) for each sign includes arbitrary constant Weyl spinor and is
obtained by projecting the Killing spinor on AdS5 on the boundary [P}, [4]. We construct
a 10-dimensional Majorana-Weyl spinor as

A
¢ — < €+ ) , (2.21)
€-A

where ef& satisfies (R.20)) and e_ 4 is the charge conjugation of ef and satisfies

1
Va€a = 1125%706,,4, V5€_A = —€_4. (2.22)

The action (R.1) is invariant under the superconformal transformation

0cAg = iALge, 66Xy = iA e,

O = %Fabfab + D X, TT™ — %ermrava — %[Xm, XTI | e (2.23)
€4 in (R.2() includes four real degrees of freedom for each sign as mentioned above and
there are four SU(4) indices, so that € in (.21]) possess 32 real degrees of freedom. Namely,



the superconformal symmetry (R.23)) has 32 real supercharges. In the SU(4) symmetric
notation, the transformation (R.23)) is written as

0eAa = i(Miavact — Erara)L),
5. XAB = Z’(—Ef)\f + €§Af + eABCDSurcE—D)v

S A = ZFupy®ed + 2D, X8 _p + X481V e_p + 2i[ XY, Xop)eb,

N |

1 .
Och_p = 3 ab"yabe_A + QDQXAB’YGEE + XAB’y“Vaef + QZ[XAC, XCB]E_B. (2.24)

In the remaining of this section, we make a comment on the equivalence between N' = 4
SYM on R* at conformal point and A' =4 SYM on R x S3. We first see the relationship
between R* and R x S3. If one starts with the metric of R4,

ds® = dr® + r2d03, (2.25)

makes a change of variable, Inr = 7, and defines a new metric through a Weyl transfor-
mation, ds? = e?"ds’ 2, one obtains the metric of euclidean R x S3,

ds'”® = dr® + d03. (2.26)

The analytical continuation, 7 = it, yields the metric of R x S3. This indicates how these
two theories are related. There is one to one correspondence between operators on R4
and states on R x S® as common in conformal fields theories. Namely, one can move an
operator at arbitrary point on R* to the origin by a conformal transformation, and map
it to an state on R x S3 because r — 0 corresponds to ¢ — —oo. One can also see from
Inr = 7 that the dilatation operator on R* corresponds to hamiltonian on R x S®. That
is, the scaling dimension A on R* corresponds to the energy E on R x S2. More precisely,
there is the Casimir energy, Fy, on S3. Thus A = E — Ej. The value of Ej is for instance,
calculated through the Weyl anomaly near R* and equal to %N 2 [1g). In this paper, for
simplicity, we redefine the hamiltonian by H — H — Ey and make energy of the vacuum
vanishing, so that A = F holds. Note that this equivalence holds only at conformal point
on R* and breaks for instance in a situation where the Higgs field has a non-vanishing vev
on R*.

3. Harmonic expansion on S*

In this section, we develop the harmonic expansion on S3. In section 3.1, we consider
generic spherical harmonics on S® and obtain a formula for the integral of the product
of three spherical harmonics. In section 3.2, we restrict ourselves to scalar, spinor and
vector harmonics and describe some useful properties. We define vertex coefficients by the
integrals of the products of these harmonics. In section 3.3, we find the vector and spinor
harmonics that correspond to the conformal Killing vectors and spinors, which appeared

in section 2.



3.1 Spherical harmonics on 5?3

First, we construct the spherical harmonics on S3, following the strategy in g, where the
harmonic functions on the coset space G/ H are discussed. In this case, S3 = SO(4)/SO(3),
namely G = SO(4) = SU(2) x SU(2) and H = SO(3). The subgroup H = SO(3) is
naturally identified with the local ‘Lorentz’ group SO(3) on S3. We denote the generators
of the SU(2) in G by J; and those of the SU(2) in G by J; ,where i = 1,2,3. Then, the
generators of H are represented by L; = J; + J;.

The irreducible representations of G are labeled by two spins, J and J, which specify
the irreducible representations of the SU(2) and the SU(2), respectively. We denote the
basis of the (.J,.J) representation by |Jm)|.Jm). The basis of the spin L representation of
H is constructed in terms of |Jm)|Jn):

|Ln; JT)) =Y Chm - [ Jm)|Tim), (3.1)

mm

where Cfgb 7, 18 the Clebsch-Gordan coefficient of SU (2) and the triangular inequality,

|J—J <L<J+J, (3.2)

must be satisfied.
A definite form of the representative element of G/H is given by

T(Q) _ 6—iwL16—ig0L36—i0K1, (33)

where K; = J; — J; and Q = (0, 0,%) is the polar coordinates of S3. Note, however, that
the explicit form of T(Q2) is barely needed in the following arguments.
The spin L spherical harmonics on S? is given by

Vi 5(Q) = N7 H{({Lns JICTHQ) [ Tm)| Jim), (3.4)

where N f 5 is the normalization factor. It is fixed as

@I+ DT +1)
Nt = \/ L1 . (3.5)

such that the spherical harmonics (B.4) satisfies the orthonormal condition:
/dQ D I ) VI s = 8008 7 s S (3.6)

Here the measure is normalized as [ dQ21 =1 and can be identified with the Haar measure
of G since the integrand is invariant under the action of H. Then, one can easily verify (f.6)
by using the orthogonality of the representation matrices of G under the Haar measure and

a relation

Z Cod 15Cha b3 = Occr Oy (3.7)
af



The equations (B.3)) and (B.4) give the complex conjugate of y‘f;n P

i) = () 39

The covariant derivative is understood as an algebraic manipulation:
Y VE L (9) = NE(Dn S| (i) TN Q)] Jm) ). (3.9)
Using this relation, it is easy to obtain the eigenvalue of the laplacian for the spin L
spherical harmonics:

VEVEn () = =20 + 1) +2J(J +1) = LL+ 1) VIm 5 (). (3.10)

We need the integral of the product of three spherical harmonics in rewriting the
interaction terms in terms of modes. By making composition of the angular momentum
repeatedly and using the orthogonality of the representation matrices of G and a formula
for the 9 — j symbol ([A.4), we obtain a compact formula

L n Lon Lan Lin
dQ § : 1mn1 an2 3n3 oL
/ Jima,Jiima yJ2m27J27712 stmanaﬁ"ba Lanz Lans
ninans
Jv 1 Ly

= \/(2L1 +1)(2J3 +1)(202 + 1)(2J3 4+ 1)(2J3 + 1) { Js J:Q Ly pCpm Jsmscﬁgggjgmg.
J3 J3 L3

(3.11)

Note that the integrand on the left-hand side is again invariant under the action of H. The

equation (B.I1)) is one of new results in this paper, which can be applied to any field theory
on S3.

3.2 Scalars, vectors and spinors on S?

In this subsection, as an application of the results in the previous subsection, we consider
scalars, vectors and spinors on S3.

The scalar corresponds to L = 0. From the triangular inequality (B.g), we see that
(J,J) = (J,J). We introduce a notation for the scalar:

Yo = Vil (3.12)
where M stands for (m,m). The vector corresponds to L = 1. Then, the triangular
inequality implies that (J,.J) takes (J + 1,.J) or (J,J + 1) or (J,.J). We assign p = 1,
p = —1 and p = 0 to these three cases, respectively. We make a change of basis from the

basis |1n;.J.J)) to the vector basis:

1.70) = \%(—u 1 JJY) + 1, ~15.10)))
12, 7J)) = %(11,1,JJ>>+\1,—1;JJ>>>
13; JJ)) = |1,0; J.J)). (3.13)



Accordingly, the vector harmonics on S? are defined by

Vi i = N3 T T Q) Tm) | Jm) (6 =1,2,3), (3.14)

which are just a unitary transform of y}yn Jm- We introduce a notation for the vector:

p=1 _ .~y
Yivi = Vi1 m,am

YJPJ\};l = _iyflm,J-i-l mo
Yo = Yim s (3.15)
Here the factors 4i on the right-hand side are just a convention. Note that Y}):O M=(0,0)i =
0. The spinor corresponds to L = % The triangular inequality implies that (J, J ) takes

(J+3,J) or (J,J +1). We assign k = 1 to the former and x = —1 to the latter. We

introduce a notation for the spinor:
Yfi:l _ yL:%p‘
JMor = Vg Lo g

L=1a

=1 ;
Yiva = me,QJ . (3.16)

where a takes % and —%.
The orthnormality condition (B.G) is translated to the scalar, the vector and the spinor
as

/dQ (YJIMI)*YJ2M2 = 6J1J26M1M25
/dQ (YﬁlMli)*Y£2M2i - 501025J1J25M1M27
/dQ (Yflll\/lla)*Y‘ZQJMQQ = 5&1525J1J25M1M27 (317)

while their complex conjugates are read off from (B.§) as

(Yom)* = (=1)""™Y;_n,
(Yj)Mz‘)* = (_1)m_m+1yj)—Mz"
(Yiyge)" = (=1)mmtnmedly s (3.18)

By using (B.9), it is easy to show that the following identities hold:

VY =0,
€ijie Vi Y = —2p(J + 1) Yy,
Vi Yo = —2i\/J(J+1) Y. (3.19)

The eigenvalues of the laplacian can be read off from (B.10):

Vz YJM = —4J(J + 1) YJM7
V2YEL = —(4J(J+2)+2) YL,
v? Y}]Mz' =—4J(J+1)-2) Y})Mia

3
V2Y e = —(2J(2J +3) + Z) Yt (3.20)

,10,



Using (B.9) yields an identity
‘ . 3

In what follows, we define various integrals of the product of three scalar or spinor or
vector harmonics, which we will call vertex coefficients. The vertex coefficients are needed
to make a mode expansion for the interaction part. Their expression are obtained by using
the formula () We give these expressions in appendix B. The expressions for the vertex
coefficients consisting only of scalars and vectors are already given in [[I9, 0], where the

9-j symbols are, however, not used.

J1 M _ *
CngMgl J3sMs — /dQ (YJlMl) YJQMQYJgMg-

CJ1M1 JoMso J3Msz — /dQ YJ1M1YJ2M2YJ3M3-

JM _ *v7P1 02
DJ1M1P1 JoMaps = /dQ (YJM) YJlMliYJQMQ’i'

_ p1 P2
Dym nMipy JoMops = /dQ YomrY g oaniY gonsic
— oy P2 p3

EnMipy J2Mapy JsMsps = /dQ €ijk YJlMliYJQMQjYJgMgk'

J1 Mik1 _ K1 *V/ K2
’7:J2M2H2 JM = ds2 (YJlMla) YJQMQOéYJM'
GIM o, = [ A (Y ) ohsY 2 YT (3.22)

JoMoko JMp - J1Mia Oéﬁ JgMgﬁ JMi* ‘

3.3 Conformal Killing vectors and spinors

The vector spherical harmonics that correspond to the conformal Killing vectors were
already found in [R0]. The number of the independent conformal Killing vectors is 15,
which is equal to the number of the generators of SO(2,4). The conformal group SO(2,4)
contains R x SO(4) as a subgroup, where R corresponds to the time translation and SO(4)
corresponds to the isometry of S3. The conformal Killing vectors corresponding to the
generators of this subgroup is also the Killing vectors, namely these vectors satisfy the
Killing vector equation V&, + V&, = 0. The number of the generators of the subgroup is
1+ 6 = 7 so that the number of the independent Killing vectors is 1 +6 = 7. It is easy to
check using (B:9) that the 4-vectors (1,0), (0, Yohr) and (0,Y;;,,) satisfy the Killing vector
equation. The first one corresponds to the time translation, while the second and third
ones correspond to the isometry of S3 and include 6 independent real vectors due to the

condition (B.1§). It is also easily verified that the remaining 8 conformal Killing vectors
: ' ity0
are given by (e”Y%M, \/ge”Y%Mi).
Next, let us find the spinor spherical harmonics that correspond to the conformal
Killing spinors [[f]. If we set og = 1o, it is easy to verify that the following equation holds:

i 1 i
> (Va)ap(€¥2Y55,5) = F5 D (0a)ase™ 2V 5. (3.23)
B B

— 11 —



In the next section, we will see that the conformal Killing spinors are indeed expanded by

i
eFaty®

oMo Which include 2 independent complex spinors for each sign.

4. Harmonic expansion of N =4 SYM on R x S3

In this section, we apply the results in 3 to N’ = 4 SYM on R x S3. In section 4.1, we
make a harmonic expansion of N =4 SYM on R x S? and rewrite the theory in terms of
infinitely many KK modes. In other words, we obtain a matrix quantum mechanics with
infinitely many matrices. In section 4.2, we quantize the free part of the theory and obtain
the KK tower.

4.1 Harmonic expansion of =4 SYM on R x 53

First, we fix the forms of 4-dimensional gamma matrices:

0 20°
a 4.1
7 <iaa 0 ) ’ (1)

where 0¥ = —15 and o' (i = 1,2,3) are the Pauli matrices. 6° = ¢" and ¢° = —o".

1, O —02 0
= Cy = . 4.2
Y5 ( 0 12 ) ) 4 < 0 0_2 ) ( )

We introduce a two-component spinor:

M= <1%A> : (4.3)

Using the two-component spinor, we can rewrite the action (P.1§) as follows:

In

this convention,

1 1 1 1 .
S== / dtdS) Tr (ZFabF‘“’ - §DaXABD“XAB - 5XABXAB + ipl, Do + ipl 0" Dy
g

o [XA2, (W) = v P [Xap, 7] + i[XAB,XCD][XAB,XCDQ ,

(4.4)

2
where ¢? = 92‘; M since the area of unit S3 is 272, Ay and X4P are scalars on S3, A; is a

vector on S® and 4 is a spinor on S3. Vi = 9, and V; is the covariant derivative on S%.
To quantize the system, we need a gauge-fixing. We take the Coulomb gauge,

Vid; =0, (4.5)

for convenience. The residual gauge symmetry which is realized by a gauge parameter that
depends only on time is fixed by!

/ dQ Ay = 0. (4.6)

'In the theory on S* x 5%, the zero mode of the lefthand side of (@), which is given by its integral on
5!, becomes dynamical and plays an important role [@, .
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The gauge-fixing and Faddeev-Popov terms for the above gauge-fixing are given by
Sar+rp = /dtdQ TI‘(—’LEVZ'DZ'C). (47)

It should be understood that the condition (JL.H) is always imposed by the delta function
in the path-integral. The free part of the gauge-fixed action, I = S + Sgprirp, is

1 1 1
Iy = /dtdQ Tr <—§A0V2A0 + 5({901413014@ + §A2V2AZ — A;A;
L AB | 1 2yAB L AB
+§30XAB(30X + §XABV X — §XABX
il ot + il Vit — ievie) (4.8)
while the interaction part of the gauge-fixed action is

Lin: = /dtdQ Tr (—igaoAi[Ao, Ai] + igViAO[AO, Ai] + %(ViAj — Vin)[Ai, Aj]
9 g2
_?[AOa A + Z[Ai; Aj)? —igdo X aplAo, XAB] +igVi X ap[A;, XAP]
2 2
_%[AOaXAB][AOa XAB) + %[Ai; Xag][Ai, X8 + ng[AO, P4
+gho'[As, o)+ gl [X AP, (0])] — g0 (X ap, ")

2
+QI[XAB, Xep][XAE, XP] 4 gV,e[A;, c]) . (4.9)

In (f.§) and ([.9), we have rescaled the fields by 1/g.

We make the mode expansion for the fields as

Ap(t,Q) = Z By ()Y (Q), A Z ZAJMp Y (),
(JM)#(00) p=%x1 JM
XAB t, Q ZXAB YJM ) XAB(t7Q) - ZXL?AéI(t)YJM(Q)v
JM

wa t Q Z ZwJM,‘i YJMa( )

k==%1JM
ct, )= > m®You(Q), et Q)= > emt)Yiu(Q) (4.10)
(JM)#(00) (JM)#(00)

The condition (JM) # (00) for the summation in Ay, ¢ and ¢ comes from the gauge-fixing
condition (f.f). Each mode is N x N matrix. Due to (B.1§), Ag; = Ao, A;r = A; and
XI&B = XAB imply

(Bo)' = (=1)"""By—m, (Aqnp)t = (1) Ay
(—1)mmx4B, (4.11)

>
b
SIS
=
Il

Note that p takes only +1 in (JL10) because of the gauge-fixing condition (JLH) and the
first identity in (B.19).
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In order to express (f.§) and (J£.9) in terms of the modes in (.10)), we use (B.17)~(B.22).

For the four-point interaction terms, we also use product expansions such as

Y ()Y, () = Z C:}f]\]\/ﬁ JQMQYJSMS(Q)' (4.12)
J1M1J2 Mo
The result is
I=To+ I, Ip= /dt Lo, I = /dt( LY+ 18, (4.13)

Lo=Tr| > (=)™ ™2J(J+1)B;_uByu
(J M)#(00)

1
+ ) (o (AJ aipAanty — W Ag arpAgany)
p=x1JM

il vd M X2+-J-M yAB
+Z )™ §XAB X7 —wy XapMXA

+ Z Z W oAV ae + KOS 1 AV )

k=1 JM
+ > (0™ (T +1)es —meanr | (4.14)
(JM)# 00)
L% =Tr [—igpl(Jl + 1)E Mipy JsMaps JsMsps Adi oy [AdoMops s AdsMsps]
+5 DJlMlpl JsMaps DIM JoMaps JaMaps AT My py s Ado Maps | [AdsMapss AdsMapsl)
+29\/ J1(J1 + 1)Dyaty gm0 svp XA [Asnip X251]
+Z CJQMQ i Dast 1 Mgy JsMsps A b pns X453 2 A s Msps» X i00,)
+ggj;ﬁ;:; JMp¢31M1H1A[AJMP’ U M)

. mo—1mo-+ J1 Mk T
—ig(—1)"7" Qfl 1\14222 JM¢J1M1/@1A[ JMWJQMQRQB]

. J1—M
+Zg(_ ) ml+m1+ ‘7:J21M2/{12H}M¢J1M1R1 [XAB’¢J2M2R2])

2
+ TN panCont s o X35 XES X AR XSRAD [ (419)
Lﬁi)t =Tr [_iQDJM JiMapt JoMaps Ay M py (B Ay Mops)
+29\/ J1(J1 + 1)Dgynty 5000 TMp B v [Biahs s A
CJ1M1 JsMs DIM JsMaps JaMaps | BaiMy s Adadiaps) [Bisias s AdyMups]

- J1 M- AB
—ZQCJM amy M Xy [Bans X aas,))

CJ1M1 IonnCont Jonds Jivta [ Baiagy s X ) [Busats, X 351,)
J1 M T A
fJQIMQIII:QI JMleMlnlA[BJ]Vb ngMgKg])
—2ig\/J1(J1 + 1)Dgynty 7o 0M10 TMpCr My [ATMps CooMs] | (4.16)
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where

Wi =2J+2,
wi =2J+1,
3
Wy =2J+ 72 > (4.17)

We have classified the interaction terms into two categories. Lz(rli consists of the terms that
(2

do not contain B or c or ¢ while L, ; consists of the terms that contain B or c or ¢. In each

term in LET% and Liii, the summation over indices that appear twice or more than twice is

assumed. Of course, ‘J’ in B, ¢ and ¢ cannot take zero. Note that the way to express the
(1)

four- pomt interaction using the vertex coefficients is not unique. The expressions for L int

and L

({.15) and (K.16), are one of new results in this paper.

znt )

4.2 Quantization of free part and the Kaluza-Klein tower

The free theory in which g = 0 is easy to quantize. In the free theory, one can set B jyy = 0
and cjp = ¢y = 0. A, Xj‘]\lfl and @Z)fMH behave as free particles. We can construct
the hamiltonian of the free theory from L as

| 2
Hy="Tr Z(—l)m m+1§(PJ,MpPJMp—|—u)§1 Ar_mpAimp)
JMp

,_\

J -M X2+,J—-M yAB A
+Z )" 5 (P{z M PAT + ol " XM X - Z ﬁwgngnAwJMn )
JMk
(4.18)

where Py, and PA]]]%/I are the canonical conjugate momenta of Ay, and X 3415, respec-
tively, while the canonical conjugate of @Z):}‘Mﬁ is Z@Z)T] ra- The (anti-)commutation relations
are

[(Agnrp)its (Prraep )] = 0.7, 7,000 Mo O py po Ok Ot
I 1
(XT3 ke, (P ] = 15(5£/5§/ — 8536588 15001 n1r Sy Suger
(@ a1t (Wl npor a )i} = 6540615601017 Srerr Ot Sui (4.19)

Agnmp, X j‘ﬁ and wf}Mn and their canonical conjugates are expanded in terms of the creation
and annihilation operators as

1 A - 4
AJMP = A(aJMpe szt_|_ (_1)m m—HaT]_Mpeth)’

2wJ

. Wf]‘ m—r+1 —iwAt 1 iwdt
Pryp = —i 7((—1) aj-mpe 7 — Ay, )s

1 ) -
XHi = (afffre 7! 4 (—1)" ey B e,

2wX

J
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X
AB _ . |Y¥YJ m—m AB _—iw¥Xt ABt iwXt
Py = —i 7((—1) afZye” T = agy e ),

A iw? )
Uiy = dl €T iy = bye (4.20)

The (anti-)commutation relations for the creation and annihilation operators are

[(asntp)kis (GT]/M/p/)kfl'] = 6771000 O Ot O1ier

(k. (@ o] = %EABA/B/(SJJ“SMM/(SM’(SM’7

{OF a0kt (O ga e} = 640055811 OparSurer

{(drrra)w, (dﬁll}\—J/)k/l/} = 64 8770000 O Sy - (4.21)

The free hamiltonian is rewritten in terms of the creation and annihilation operators:

AB A
Hy=:Tr Z W?“T]MpaJMp + ZW§OCJMTQ£AE/§I + Z w}D(bT]MAbéM + dJJT\/fdJMA) (4.22)
JMp JM JM

In section 6.2, we will make a comment on the constant which we discarded when we
obtained the above normal-ordered expression.

As in B3, [f], the mass spectrum of the free theory in which g = 0 can be read off
from ([l.1§). These forms the infinitely high KK tower. As stated in introduction, there
exists a mass gap and the mass spectrum is discrete. The mass spectrum is summarized in
Fig. [ Note that there is no mass multiplicity between the bosons and the fermions unlike
the supersymmetric theories in flat space.

In the case of the free theory, given an operator on R*, one can easily construct the
corresponding state on R x S in terms of the creation operators. For instance, the state
that corresponds to

Tr(X 4B xA2B2 . xAiBry (4.23)

on R*is
!
22
7 Tl a1 - a8 " H[0), (4.24)
2

where |0) is the Fock vacuum and the vacuum of the free theory. Note that this state
is normalized in the large N limit. In general, the operators that contain derivatives
correspond to the states constructed by the higher modes of the creation operators. It
was shown [R3] that the l-loop dilatation operator for a set of the operators ([23) with
fixed [ is regarded as the hamiltonian of the integrable SO(6) spin chain. In this sence,
the operators ([1.23) are regarded as the integrable SO(6) spin chain. In section 6, we will
obtain this dilatation operator by calculating the energy corrections of the states ({.24)).
For later convenience, we rewrite the superconformal transformation (P.24)) for the free
theory in terms of the modes. We introduce the two-component spinor n“ for the conformal
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Killing spinor:

A
+ 0 )
7 7
Vaejé = :tiyawoej? — VanA = :I:iaanA. (4.25)

Using the two-components spinors, we rewrite (R.24) with g = 0 as
oA = i(—wLamA + ULJﬂ,Z)A)a
0 XAP = (=i oy 4oyt — APy Lo )T,
S = —Fooam™ + F jeikorn’ — 200X Pa” ()" + 2V, X P 5i0% ()"

—Qz‘XABaz(ng)T.
(4.26)
As anticipated in section 3, (B:23) and (f.29) show that n? is expanded in terms of
eta tyi .
OMa-
Y e P Vohia D e Yy, (4.27)
m:i% m:i%

The superconformal transformation for the KK modes are read off by substituting ([.10)
and ({.27) into (f24). In Fig. [, the solid and dotted arrows represent the superconfor-
mal transformation for the creation operator caused by 7,4+ and 7;,_, respectively. In

particular, the transformation of the lowest creation operators caused by 7,4 is
5 aABT N Z 77m+dBT 77erdAT ),

mil

A 1 A
8y dit = 2v/2 > (—1)mtzClme 7mnm1+agM2+,

ami
mlzi% ,mo=0,£1
Ony g, = 0. (4.28)

We will use these equations in section 6.

5. Comnsistent truncations

In this section we describe the consistent truncations of N' = 4 SYM on R x S? to the
theories with 16 supercharges, in terms of the mode expansion performed in the previous
section. This description helps us to extract various results for the theories with 16 su-
percharges from ones for ' =4 SYM on R x S3, such as the 1-loop hamiltonian for the
SO(6) sector (section 6) and the 1-loop effective action around a BPS solution (section
7). In section f.J], we make the consistent truncations of N' =4 SYM on R x S3 to the
theories with 16 supercharges in terms of the KK modes. In section p.2, we compare the
mass spectrum of N' =4 SYM on R x S? with that of the theory obtained by quotienting
the original theory by U(1). We clarify how quotienting by U(1) yields N' = 4 SYM on
R x S%. In section p.3, we examine the vacua of N’ =4 SYM on R x S? in terms of the
KK modes.
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mass Ay T X8 Viv-a Arnv-

Figure 1: The KK tower of ' = 4 super Yang-Mills on R x S3. The first number, the second num-
ber and the third number in the parentheses represent J, J and the dimension of the representation
of SU(4), respectively. The solid and dotted arrows represent the superconformal transformation
in the free theory for the creation operator caused by 7,,+ and 7}, _, respectively.

5.1 Consistent truncations to theories with 16 supercharges

The original SYM on R x S? has the superconformal SU(2,2[4), whose bosonic subgroup
is SO(2,4) x SO(6). SO(2,4) has a subgroup SO(4) that is the isometry of the S? on
which the theory defined. In section 2, we decomposed the SO(4) as SU(2) x SU(2) and
developed the harmonic expansion. We consider a subgroup of SU(Q). We project out
all fields of N =4 SYM on R x S® which are not invariant under the subgroup of SU(2)
and consider the same interactions for the remaining fields as the ones in A/ =4 SYM on
R x 3. Taking full SU(2), U(1), and Zj, as the subgroup of SU(2) leads to the plane wave
matrix model, V' =4 SYM on R x S? and N' =4 SYM on S3/Z;, respectively [fI].

Let us describe the above truncations in terms of the KK modes. The plane wave
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n v m multiplicity
even | even 0, i% RN i%’“ n+1
even | odd :I:%, :I:%, e :t%(n -1) n
odd | even :I:%, :|:3—;, e :t%n n+1
odd | odd | 0, £2k, - -, £E(n —1) n

Table 1: The remaining modes for A" =4 SYM on R x S3/Z, for odd k.

matrix model is obtained by keeping only the modes that are singlet with respect to S~U(2),
namely (0,0,6) as (XP), (3,0,4) as (¢¢),,) and (1,0,1) as (Agar) in the KK tower [7.
The N =4 SYM on R x S3/Z;, is obtained by keeping only the modes with m = %q, where
q € Z>0.2 For later convenience, we examine the multiplicity of the remaining modes for
fixed J. When k is even, the remaining modes after the truncation have the following
quantum numbers of SU(2):

J=

|3

v
= q
+3 (5.1)

where n € Z>p and v =0,2,---,k — 2, and

m=0 j:E iﬁn (5.2)
T2 T2
for each v. Then the multiplicity of the remaining modes for fixed n and v is 2n + 1. Note
that all the modes with J a half odd integer should be projected out, because such modes
cannot have m = %ZZO.
In the odd k case the discussion is similar to the above one. The quantum number J

for the remaining modes in this case takes the following values:

~ n v
J=5+5 (5.3)

where n € Z>pand v =0, 1, ---, k— 1. Note that the range of v for odd £ is different from
that for even k. The values of m and the multiplicity for fixed n and v are summarized in
table [l.

The N' =4 SYM on R x S? is obtained by keeping only the modes with m = 0. We
will discuss this truncation in the next subsection in detail.

We close this subsection by showing the consistency of the above truncations in terms
of the KK modes. Let us first consider the cases of N' =4 SYM on Rx S3/Z;, and on Rx S2.
The conservation of m implies that each term in the action of the original theory includes

no KK mode or more than one KK mode that are projected out in the truncations. This
fact ensures that the equation of motion in the original theory for a KK mode projected

2The set “Z>o"” consists of zero and positive integers.
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out in the truncations becomes trivial after the truncations. Hence, every classical solution
of the truncated theories can be lifted up to a classical solution of the original theory.

In a similar way, one can show that the 16 supercharges for the supersymmetry trans-
formations caused by 7,4 and 7, are preserved in the truncations. These parameters
have m = 0. The conservation of m again implies that after the truncations the trans-
formations of the KK modes that are projected out in the truncations become trivial and
those of the remaining modes are still nontrivial. This means that the truncated theories
have the 16 supercharges corresponding to 7,4 and 7, , .

In the case of the plane wave matrix model one must also use the conservation of J
to show the consistency of the truncation. Indeed the consistency of the truncation was
checked explicitly in [f.

5.2 Comparison with ' =4 SYM on R x S?

In this subsection, we compare the remaining KK modes in the U(1) truncation with the
KK modes of "= 4 SYM on R x S2. Due to the mixing terms in N' =4 SYM on R x S?
this comparison is not trivial.

We begin by recalling the action of ' =4 SYM on R x S [fj?

1 sy 1 w1 5 2, 1 P TE
SQ = gT2 /dt?Tr{ — ZFa/b/Fa — §(Da’Xm) — ng — §(Da/q)) — Eq)
o~ b~ 1- 1<
—%)\F“ Dy h + %Arm’)\ = AL (X A+ SADT (@, 0
1 2 1 2
+Z [Xm7 Xn] + 5[@), Xm] - M(I)FH ) (54)
wherea’ =0,1,2, and m=1,---,6 and (F“l, I'®, T™) are ten dimensional gamma matrices.

The radius of S? is p~! and the effective Yang-Mills coupling g is defined by ¢"? =
912/ a2/4m, since the area of S? is 4m times square of the radius. We set u = 2 since this
value is obtained by the U(1) truncating of N' = 4 SYM on unit S$3. The volume integration

over S? is normalized as
dQ)
/ dQ’:/ 2 =1 (5.5)
S2 S2 47r,u—

Note that the last term in (f.4) mixes ® with A,
For later convenience we write down the mode expansion for the fields on S? here.

The details for the harmonics on S? are left to appendix C. The mode expansions for the
scalars, the vectors and the spinors on S? are given by *

J
Xap(t, ) = Y Y XIBO)Yrm(Q),
Je€Z>gm=—J

3The coefficient of the fermion mass term in (@) is different from the one in [ﬂ] This originates from
the difference of the coordinate systems.

4The set Z-o consist of only “positive” integers, although the set Z>q consists of zero and positive
integers.
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J

o, ) = D> D Cym()Yim (), (5.6)

Je€Z>gm=—J
J

= > > A OV @) + AL (O] ()] (fori =1,2), (5.7)

JEZsom=—J

e = 3 S A (Y () (for o= +3). (5.8)

Jel +Z20 m=—J

where the spinor wf is a two component one on S2. Here Af]m and Af]m are the transverse
and the longitudinal modes for the gauge fields. In the Coulomb gauge, the longitudinal
modes (A}, ) in (B.7) vanish because V;A; = 0 and V,;Y! . = 0. Note that the range of
J is different form one for S3, that is, J takes zero and positive integers for the scalar,
positive integers for the vector and positive half odd integers for the spinor. The hermicity
of the fields implies together with (C.9) the following relations:

(XIm = CumxAZL (@) = (C) R, (5.9)

(A = ()4 () = DA, (5.10)

Let us first consider the spectrum of the SO(6) scalar modes. In this case the compar-
ison of the spectrum is straightforward. The mass term for the SO(6) scalars in the SU(4)
notation is read off from (f.4) as °

1 2
Sy = / dtdQY' Tr {—XmVQXm - %an}

/dt > Z {——[ J+5 )rTr{(X?ﬁ)TXﬁE}}, (5.11)

J€Z>O m=—J

where in the second line we made the mode expansion by using (f.6)) and used the formu-
lae (C.9) and ([C.3). It is clear that this equation is the same as the third line in (J.14)with
the modes with integer J and m = 0 kept. Note that all the scalar modes with half odd
integer J in ([.14) should be projected out in this truncation because these modes cannot
have m = 0. The mass for the scalars on S? are immediately read off as u(J + %) The
multiplicity for fixed J is given by

The result is summarized in table [
We next consider the gauge field A; and the scalar ® together. As mentioned before
this comparison is not straightforward due to the mixing between A; and ®. We obtain

5For a moment, we omit the common factor 1/(ug’)? for convenience since it is irrelevant here.
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AB
XJM

mass ‘ multiplicity H
n(J+3) ‘ 2J + 1 H (J,J,6)

Table 2: The SO(6) scalar mass spectrum of N'=4 SYM on R x S%: The range of J is J € Z>o.
Note that 4 = 2. The column of X j‘ﬁ shows the corresponding N = 4 scalar modes on S3 with
the same mass.

their mass terms using the mode expansions (f.6) and (f.7) as follows:

! 1 2 'u2 1 2 M2 2
Sap = dtdQ)' Tr §sz A; — EAZAZ + §<I>V b — E(I) — ud®F (512)
2 J
H oot 1| —JUT+1) VIT+1)
- Janll ¥ [l |
2 JGZZ() m=—J |: ] J(J + ]-) _J(J + 1) -1
Al

b

Here we took the Coulomb gauge, so that there is no longitudinal mode Af]m in this

(I)Jm

expression. A unitary matrix that diagonalizes the above mass matrix is given by

_ L |WIET VI (5.13)
V2T VI VT '

By redefining the modes for A j,, and ®j,, as

, 1+J J
=/ T > .
PAT—1)ymt 1_|_2JAJm 1+2J‘1>Jm, (for J > 1) (5.14)

J 1+J
A = —y] ——— At P f > 1
1A sm 527 Jm—i—\/l_’_QJ Jms (for J >0) (5.15)

J+1

1
SA<I> :/dtTl“{—§ Z Z MQ(J+ 1)2AT]m+AJm+

JEZZ() m=—J—1

J
—% Yo D U+ 1)2A3m_AJm}-

Je€Z>gm=—J

we find

(5.16)

It is clear that this expression is the same as the second line in (4.14) with the modes with
m = 0 kept. Note that all the vector modes with half odd integer J in ({£.14]) should be
projected out in this truncation because these modes cannot have m = 0. The result are

summarized in table f.
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mass multiplicity Ajni+

p(J+1) | 2041 | (J,J+1,1)

w(J+1) | 2J+3 (J+1,J,1)

Table 3: The gauge boson and ® mass spectrum of ' = 4 SYM on R x S?: The range of J is
J € Z>y. Note that ;o = 2. The column of A+ shows the corresponding gauge field modes on
S3 with the same mass.

Finally, in a similar way, we examine the mass spectrum of the fermions. The fermion

mass term in (p.4) is

Sy = / dtdQ T [—%Xra’vix n %XFM’A} _ / dtdY T [wgaiviw n %%W

=1 far 3 S ]

Jel T4+ Zsom=—J

1
14
Vi
-1
Vm

+31 J+3

, 5.17
J+3 +1 (5.17)

In the first line we decomposed the sixteen component spinor A into the two component one
b using (R.16) and ([.3). In the second line we made the mode expansion by using (p.§).
Then a unitary matrix that diagonalize the fermion mass matrix in (f.17) is given by

v:% [_11 1] (5.18)

After redefining the modes as

1 1 _1
Yoo+ = 75 [@D?ﬁ + MA} Y- = 5 [ in U ] . (5.19)

one finds

J+1i -

3
Sy = /dtTr Z Z M J+ﬂ wjr](m,O)JrAw?(va)Jr

JEZZ() m:—J—% -

Z Z [‘”" ¢S(m,0)_A¢§(m,0)— - (5.20)

Jel +Z>0 m=—J

It is clear that this expression is the same as the forth line in (JL.14]) with the modes m = 0
kept. The multiplicity for the modes with J is 2J 4+ 1. Notice that all the fermion mode
(J + 3, J,4) with half odd integer .J in ([.14) should be projected out because these modes
cannot have m = 0. For the same reason all the fermion mode (J, J + %, 4) with integer J
in ({.14) should be projected out. The result for the fermion is summarized in table
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J mass multiplicity ViM+
JE€Zsog |pu(J+3)| 2J+2 (J+ 3, 7.4)
Je€g+Zz [ p(J+D | 2/+1 | (JJ+3,4)

Table 4: The fermion mass spectrum of N' =4 SYM on R x S2:The column of 9 ;3s+ shows the
corresponding fermion modes of N' =4 SYM on R x S? with the same mass. Note that pu = 2.

5.3 Non-trivial vacua of N =4 SYM on R x 52

It is discussed in [fl] that A" = 4 super Yang-Mills on R x S? has many non-trivial vacua.
Then it is valuable to describe these non-trivial vacua in terms of the modes to investigate
the dynamics of this theory there, although we will study this theory in the trivial vacuum
in this paper.

Let us start with writing down the potential terms in (f.4) that we focus on:

1

Spot = 1 dtdY'Th 1F c1>2 V,® —i[A;,® ’ 5.21
pot—gl2—lu2 r —§< 12+ 1 ) —5( i@ —i[A; ]) . (5.21)

Because the potential consist of the sum of the two complete square terms, one immediately
reads off the conditions for the zero-energy vacua:

Fio + pu® =0, (5.22)
Vid—i[4;,®] =0 (i=1,2). (5.23)

These equations are rewritten in terms of the KK modes (p.6)) and (f.7) as

0 ,,0
S TEEEEY g -
—K J(‘] + 1)A3m + :uq)Jm + : 2 {1 - (_1)J1+J2 J}C:fjlol JQ—lC:]]fZ’LlJQmQ

4n?,
t t
[AJlml ) AJQmQ] =0,
(5.24)
0 ,,0
nnny. -
I (T + D) = =52/ Do+ DAL = (=) RC g 1O gamy
J
[A?Ilmla(I)szz] = 07
(5.25)
noJlnng{l + (_1)J1+J2_J}C:]]111 JQOCgL]]fZ’LlJQWQ [Aslmp q)J2m2:| = 07 (526>

with no summation over J and m. Here we took the Coulomb gauge V;A; = 0, so that there
is no longitudinal mode A%, in the above expressions. The equations (F.25) and (F.26)
correspond to the longitudinal and transverse components of (p.23), respectively.
Unfortunately, it is difficult to find general solutions for (p.24))- (p.26]). Then we would
like to solve them with some assumptions. Let us first make an ansatz that the non-

vanishing modes are only Aj,, and ®;,, and that they are related as

1, = Al (5.27)
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Then it is easily verified using the relation C;{™ = (-Dii=Iofm that the equa-

Imilmeo 1Imolmg

tion (p.2€) is trivially satisfied. When we set o = %, the equations (p.24) and (p.25) are

reduced to three non-trivial ones:

2 2
[A10, A141] = $\/;MA111, [A11, A14] = \/;ux‘ho- (5.28)

This is nothing but the SU(2) algebra. Then the non-trivial solution is

2 1
A=Ltory, A= —%L_, A = \/;ML:»,, B1 = —=Aim, (5.29)

V3 V2
where L;’s are the SU(2) generators. It is easily checked that this solution are consistent
with the hermicity conditions for the KK modes (f.9) and (5.10)), of course, as it should
be. When we consider the N’ = 4 U(N) SYM on R x S?, our solution is expressed by
an irreducible or reducible SU(2) representation of dimension N. Then the number of
the vacua that our solution (p.29) can represent is equal to the partitions of N, that is,
P(N). This number coincides with the number of vacua of the plane wave matrix model [f[].
Note that our solution corresponds to a part of the solutions discussed in [ [[J, where the
total number of the vacua of this theory and the tunneling amplitude between them are

discussed.

6. 1-loop calculations and the SO(6) spin chains

In this section, we examine the 1-loop corrections. We consider those in the original theory
in sections 6.1~6.3, and those in the truncated theories in section 6.4. In section 6.1, we
illustrate the calculation of the 1-loop diagrams with the 1-loop self-energy of X 4p. In
section 6.2, we introduce cut-offs for loop angular momenta as a regularization scheme
and calculate the divergent parts of the self-energies of all the fields and some interaction
vertices. We see that the coefficients of the logarithmic divergences are consistent with the
vanishing of the beta function and the Ward identity. In section 6.3, we determine some
1-loop counter terms by examining the energy corrections of the BPS states. We examine
the 1-loop energy corrections of the states that correspond to the operators on R* which
are regarded as the integrable SO(6) spin chain. We show that the energy corrections are
actually given by the hamiltonian of the spin chain. In section 6.4, we determine some
couter terms in the truncated theories by examining the 1-loop energy corrections of the
BPS states. We find that the states viewed as the integrable SO(6) spin chain in the
original theory are also viewed as the same spin chain in the truncated theories.

6.1 Calculation of 1-loop diagrams

In the calculation of the 1-loop Feynman diagrams, we need the propagators, which are
read off from ({.14) as

1

(XA QX3S (=) = =eaparp (=1)™ 8171001 —apOrr O 5

; (6.1)

_ X%
q wy
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. i
(Biv (@) By (=) pr) = (1) 01500 —M’5kl’5lk’4

J(J+1)
. i
(Asntp @ Ag gy (=) = (=1)™ 8 1 1601 — 00 8y Srr S YL (6.3)
q- —wy
A T A i(q — FM?)
WO @Dr oy a( Qi) = S5 000mm 6 A/5m/7w2, (6.4)
q2 — Wy
_ 1
C ! I\ — 177 == _1 m_m6 /6 _ /5 /6 A 6.5
(com (@l (—wr) = (—1) T/ OM —M Okl Ol 3 73 Ty (6.5)
where ¢q is conjugate to t.
(X-a) (X-b) (X-c) (X-d)
P
/7 \
_( )_
S
(X-e) (X-f)

Figure 2: Diagrams for the one-loop self-energy of X 45. The curly line represents the propagator
of A;. The wavy line represents the propagator of Ag. The solid line represents the propagator of
X ap. The dashed line represents the propagator of 4.

Here we consider the 1-loop self-energy of X 45, which is (—4) times the 1-loop contri-
bution to the 1PI part of the truncated 2-point function (X M (¢) X 14 (—q)p). We will
consider the self-energy of the other fields and the 1-loop corrections to some interaction
vertices in the next subsection. The six diagrams for the self-energy of X 45 are shown in
Fig. 2. We illustrate our method by calculating one of the diagrams, (X — f). By using
the vertices in ([L15) and the propagator (f.4), we obtain an expression for this diagram.

. 1
4Zg2N5kl’5lk’§€ABA’B’ Z
JiMyJaMakik2
dp [ i(p — k1wY ) i(—p + q — Kow")
« _p p 1% 7 pT4q 2% Ty J1 —Mik1 ]:J2M2f€2
1t 9 P 2 9 P 2 JoMoko J—MY Ji —Mik1 J' —M’
pP-wy (—p+q)? —wy,
. Py »
+Z(p —rwy )i(=p—q—Kowy) 5 an T2 Mk
JoMoro J'—M'Y J1 —Mik1 J—M

2 2
pr-wh (a2 -wh

P P
U‘)Jl + wJQ

1
_ 2 - J1 MKy JoMak1
= —8g Nakl’élk/QeABA/B’ Z fJQMQKl J—MleMllil J=M' " g
J1 My J2 M2k q — (le +wJ2)
(6.6)
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Here we plug in the expression for F in (B.5), take summations over M and My using the
formulae (A.]) and (A.3). We also take a summation over x; and plug in the expression
for the 9 — j symbol available in [24]. We eventually obtain

1 o
_1692N5kl’5lk’§5ABA’B’(—1)m "6 00— M

XZ(2J1+2J2+3)(J1+J2+J+2)(J1+J2—J+1) 6.7)
J1J2 (q2 - (2J1 +2J3+ 3)3)(2J + 1) 7 .
where J; and Jo take non-negative half-integers (0, 551, ;’, .-+, ), and summations over J;

and Jy are taken such that they satisfy |J; — Ja| < J < J; + J5. Because the summations
give rise to divergence, we must introduce a regularization. In the next subsection, we give
a method for regularization and calculate the divergent parts of the 1-loop diagrams.

In the following, we list unregularized expressions for all the diagrams in Fig. 2. The
1-loop self-energy of X 4p takes the form

1 e
92N5kl’5lk’§€ABA’B’(_1)m MG 10— I (). (6.8)

We write down the contributions of each diagram to I (¢).

(—=1)m mi-+ms ms §
(X —a)= Z S, Y ATES) ( )CJ —M My Js —MCar — MY gy =My Ja M
J170,J5 My Mo 1

X-b)=— >
J1#£0,J2 My Mo

1 (2J1+1) [¢* + (2J2 + 1)?]
12 J(J1+1)(2J + 1)

i(,l)mlfﬁlﬁrmzfﬁw(g(o
2J1(J1 + 1)

CJ —M J1 My J2 —]\/IQCJ/ —M' Jy —My J2 Mo

{Ja JI;JQ}a
J1#0,J2
(2J1 +1)(2J1 +3)

-2
Z 2J1 +2 ’

_ :_42

J1J2
(21 +2L+3)(J+ i+ Jo+2)(Ji+Jo— J+1)(J = J1 + Jo+ 1)(J + J1 — Jo)
(2J +1)(J2 +1)2[q? — (2J1 + 2J2 + 3)?]
X{J, JlaJQ}{Jv JI;JQ + 1}5

2Jp +1
(X—e)=—5> T2 {J.J1, ]2},

2J +1
J1J2
S +2J2+3)(Ji+ o+ J+2)(Ji+Jo—J +1
(- =16y CAERREIUDS S b JE I 4 T L g g ) (69)
— (27 +1)[q% — (2J1 + 2J> + 3)2]

where {J, J1, Jo} represents the constraint |J; — Jo| < J < J; + Jo. Note that the terms
proportional to §(0) cancel in (X — a) and (X — b) [R]]. We will later need the 1-loop

on-shell self-energy for the lowest mode of X 4p, which is obtained by plugging in ¢ = 1
and J = 0 into (.9).

1 (2J1 +1)(1 + (21 +1)?)
(X0 -y = -3 3 SRS
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(2J1 + 1)(2J; + 3)
-2
Z 2J1 +2 ’
(X —e)=-5> (2 +1),

(X —f)=4> (41 +3). (6.10)

J1
6.2 1-loop divergences and the Ward identity

All the expressions in (B.9) are divergent and must be regularized. As a regularization
method, we introduce a cut-off for the loop angular momentum. Again, as an example,
we explicitly regularize (X — f). We introduce the cut-off Ay for J;. (Of course, we could
introduce it for Jy.) The suffix ‘f’ indicates that the cut-off is the one for the loop of
waR. Fig. 3 shows the region of the regularized summations over J; and Jo. We define

Ja
A

Figure 3: Region of the regularized summations over J; and J

new variables P = J; + J5 and Q = Jo — Ji, which take integers for integer J and half odd
integers for half odd integer J. Then, we obtain the regularized expression for (X — f).

205 —J
2P+3)(P+J+2)(P—J+1)
61> Z Z Z (¢>— (2P +3)%)(2J + 1) - (611

P=J Q= r=—J+1Q= TP:2Af+2r

It is difficult to calculate this analytically, however the divergent part is easily evaluated

as
20y —J Ag—
8 (P 1 2(¢* — (2
Z + ) +16 Z Z J+1+ (> — (2 +1 Z
r=—J+1 Q=r P=J
:16Af+32Af+2(q — (27 + 1)*) In(2A§). (6.12)
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We list the divergent parts of the expressions in (f.9).
X—a)+ (X —b)=—-2A2—3A,+ |-¢* - %J(J +1) — 1| log(2As),
X —¢) = —4A% — 10A, + 2log(2A,),
X —d)= —6J(J + 1) log(2A,),
) =

X —e —10A§ — 15A,,
(X — f) = 16A7 +32A5 + 2 [¢* — (2] 4 1)*] log(2A§), (6.13)

(
(
(
(

where A, and A, represent the cut-off for the loop of Ay, and the cut-off for the loop of
X ﬂ‘g or By, respectively. It is natural that Ag, A, and A are the same order quantities,
so that we can set log(2A) = log(2A,) = log(2Af) = log(2A) in the divergent parts. In
appendix D, we list the divergent parts of the 1-loop self-energies of the other fields and
those of the 1-loop corrections to some interaction vertices.

It should be remarked that all the 1-loop divergences here and in appendix D are local
ones, namely they can be canceled by the local counter terms. This property is crucial in
renormalizing the theory. In order to keep this property, one must introduce the cut-off
for the angular momentum of a certain internal propagator in each diagram. For instance,
one is not allowed to introduce the cut-offs for the angular momenta of several internal
propagators or divide a contribution of a diagram into several parts and introduce the
cut-off for the angular momentum of a different internal propagator in each part. Indeed,
in the above example, we have introduced the cut-off Ay only for J;. Of course, the finite
part as well as the divergent part in a 1-loop diagram generally depends on for which
angular momentum the cut-off is introduced. As discussed in the following, however, this
ambiguity does not matter. Our regularization method breaks the gauge symmetry and the
superconformal symmetry though it preserves the R x SO(4) symmetry. As in [R5], these
symmetries would be recovered by introducing the counter terms that breaks the gauge
invariance or the superconformal invariance and making the fine-tuning for the coefficients
of these counter terms including the finite renormalization. Our gauge fixing also respects
only R x SO(4) symmetry. We have to consider, therefore, all the terms whose dimension
is less than or equal to four and which are invariant under R x SO(4), as the counter terms.
The counter terms quadratic in A;, Ao, ¢, Xap and ¥ take the following forms.

A; s asTr (%(BOAZ')2 + %ANQAi — AiAZ) + ﬂ—AT (A;V2A; 4 24 4)

—7aTr(A;i4;), (6.14)

1
AQ : —aBTr <§A0V2A0> + 77BT1“(A0)27 (615)
¢ a.Tr(—ieVie) + yoTr(éc), (6.16)

1 1 1
Xap : axTr (560XA360XAB + §XABV2XAB - §XABXAB>

+%XT1~(XABVZXAB) - %XTr(XABXAB), (6.17)

WAy Tr(ig o + il o' Vi) + By Te(i]y o' Vi), (6.18)
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The first term in each line is absorbed by the wave function renormalization of the corre-
sponding field.

Let us see that our results of the 1-loop calculation are consistent with the vanishing
of the beta function, which is characteristic of conformal field theories. We immediately
see that the quadratic and linear divergences in ( are absorbed in yx. The sum of
the logarithmic divergences in (B.13) is (¢ — w¥")log(2A). This shows that the cut-off
dependent part of ax is

ax ~ —log(2A)gN. (6.19)

Egs. (D.2), (D4), (D.6) and (D.§) in appendix D show the divergent parts of the diagrams
for the 1-loop self-energies of A;, Ay, ¢ and 1*, respectively. The quadratic and linear

divergences in (D.J) and (D.4) are absorbed in 4 and vp, respectively, while the self-
energies of ¢ and ¥ contain only the logarithmic divergences. The sum of the logarithmic
divergences in (D22) is 3(¢* — w92) log(2A). The sum of those in (D-4) vanishes. The sum
of those in (D) is —%J(J + 1) log(2A). The sum of those in (D-§) is 2(g + mw?) log(2A).
All of these logarithmic divergences are absorbed by the wave function renormalization.
We can determine the cut-off dependent parts of aa, ap, a. and oy as follows:

ay ~ —% log(2A)g* N, (6.20)
ap ~ 0, (6.21)
e~ 2 Tog(20)g°N, (622
oy ~ —2log(2A)g*N. (6.23)

As seen in (D.9), the diagrams for the 1-loop correction to the ghost-ghost-gauge inter-
action term are not divergent. The counter term proportional to Tr(V;c[A;, ¢]) does not
depend on the cut-off. This means together with (f.20) and (f.22)) that the bare cou-
pling constant can coincide with the renormalized one, namely the beta function vanishes.
Similarly, the divergent parts of the diagrams for the 1-loop correction to the Yukawa in-
teraction term are listed in ([D.9) and contain only the logarithmic divergences. The sum of
those divergences is g log(2A). The cut-off dependent part of the coefficient of the counter
term proportional to Tr(zpj[‘a2 [XAB, (w};)T]) is —g log(2A)g3 N. This again means together
with (6.19) and (p.23) that the beta function vanishes.

In general, the coefficients of the logarithmic divergences do not depend on the details

of regularization, so that they respect the symmetries. This is consistent with the fact
that we were able to check the vanishing of the beta function through the logarithmic
divergences in our 1-loop calculation. Because our gauge choice only keeps the R x S3,
it is difficult to examine the Ward identities for the superconformal symmetry. Here we
content ourselves to see that the coefficients of the 1-loop logarithmic divergences satisfy
the Ward identity for the gauge symmetry. As in [RI], we consider the Ward identity in

the flat limit that relates the 1-loop self-energy Il,; of the gauge field with the coefficient
®? of the K,c term in the 1-loop effective action, where K, is the source added for the
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operator [QpRrst,c].% It takes the form
8aﬁab + (8277ab - aaab)q)a =0. (624)

As discussed above, the logarithmic divergent parts of II,, and ®, should satisfy this
identity. As explained in [RI]], the logarithmic divergent parts of I1,, take the forms

4 = C((p§ — prpr)dij + pips)g° N log(24),
I15" = Dpipog” N log(2A),
I3 = (=C + 2D)pipig® N log(2A), (6.25)

where C' and D are certain numerical constants. The logarithmic divergent parts of ®, are
determined by the Ward identity (p.24) as

odv =0,  @U = (—C + D)pig® N log(2A). (6.26)

We saw above that C' = % and —C' + 2D = 0, namely D = % In our case, g obviously
vanishes and ®; is determined by calculating the diagram in Fig. 4. Its divergent part is

2
/dtdQ Tr (K;Vic) x [—§g2Nlog(2A)] . (6.27)
This means —C' + D = —%, which is indeed consistent with C = % and D = % We can

also read off C' and D for the pure Yang Mills sector by considering only (A —a) ~ (A — f)
in Fig. 7 and (B —a) ~ (B —¢) in Fig. 8. The result is C' = —% and D = —Z for the pure
Yang Mills sector, which gives —C' + D = —% again. This is consistent because ®, for the
pure Yang Mills sector is the same as that for N'= 4 SYM. This consistency in pure Yang
Mills is actually shown in [PT].

Figure 4: Diagram determining ®;. The curly line represents the propagator of A;. The dotted
line represents the propagator of the ghost.

We close this subsection with an interesting observation. The quadratic and linear
divergences appear in (b.13), (D.9) and (D.4). If we set

1 1
AU:As_i, Af:AS_Z’ (628)
those quadratic and linear divergences cancel and only the logarithmic divergences are left.
Furthermore, these constant shifts of the cut-offs enable us to reproduce the Casimir energy

SHere the longitudinal components of the gauge fields are included in the definition of Igp.
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in the free theory as follows. When we rewrote the naive expression to the normal ordered
one in (4.22), we discarded the constant

N? <2 > o@I+1)2] + 3)%(4)3‘ +6) (2] + 1)2%w§ —8) (27 +1)(2] + 2)%@”)@.29)
J J J

where the first, second and third terms are the contributions of the gauge fields, the scalars
and the fermions, respectively. Each term in (f.29) is quartic divergent in the angular
momentum and must be regularized. If we set the upper end in the summation over J in
the first term at A, in the second term at Ay and in the third term at Ay and assume the
above constant shifts of the cut-offs (£.2§), we remarkably obtain the finite value, N2,
which is independent of A;. This is equal to the Casimir energy and is reasonably obtained
as the zero point energy. The constant shifts of the cut-offs correspond to a complete
specification of the regularization scheme. The physical meaning of these shifts is unclear
at present and its understanding is an open problem. Here we only point out that these
shifts are obtained by requiring that the average of J and J of the internal propagator
agree for all the fields. That we are left only with the logarithmic divergences after the
shifts of the cut-offs does not mean that we need no counter terms that break the gauge
invariance. We need in general the finite couter terms that break the gauge invariance even
in this situation.

6.3 Determination of counter terms and the SO(6) spin chain

In this subsection, we obtain the 1-loop dilatation operator for the operators (.23)) in N = 4
SYM on R* by calculating the order g?N corrections to the energy of the states (E24) in
N =4SYM on R x S3. One can also consider the states (f24]) in the truncated theories.
We show in the next subsection that the order g2 /N energy corrections of these states agree
with that in the original theory, namely these states in the truncated theories are also
regarded as the same integrable SO(6) spin chain.

For the above purpose, we need the H§:0(1), which is the coefficient of the on-shell
self-energy for the lowest mode. The determination of this value is equivalent to fixing
vx in (B.17), because the first and second terms in (p.17) vanishes for J = 0 and ¢ = 1.
We determine this value by considering the BPS state. In addition, we similarly deter-
mine 114_,(2) and H?ZO(—%). The determination of the former is equivalent to fixing 4
in (6.14), while that of H?ZO(—%) is equivalent to fixing 3y in (6.18).

We consider the half-BPS state in the free theory, which corresponds to a special case
with [ =2 in ([.24):

2 34t 34
~Tr(a' o )[0), (6.30)

This state is mapped to the chiral primary operator Tr((X3*)2) on R*. The energy of this
state is 2. We also focus on the states that correspond to the descendant operators gen-
erated by the superconformal transformation caused by 7,,+. Their forms are determined
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%T (@ilani0). LTl elihio), (631)
\/_NTr(d?’T O)dg‘z )+2aT( L 10)+- 200 )10), (6.32)
ﬁT (d?’T déz 10) dgf )dgeo)_mag(m) L agoho), (6.33)
NTr(d?’I )dgLF )0+ (d‘;{i O)dgLF 0)10), (6.34)
ﬁT (d?’T déz 10)—ng 10)ng 0)10)- (6.35)

The energy of (p.31)) is 2. The energy of (6.39), (639), (6.34) and (B-35) is 3. All the above

states are half-BPS, and their energy must not receive any correction when the interactions

are turned on. The BPS state (6.32) may mix with the non-BPS state whose energy is 3,

31 3t ol of 347
oN (dO(i%O)dO(i%O) g (110)+ %00 )[0), (6.36)
while the BPS state (.33) may mix with the non-BPS state whose energy is 3,
1 3T 4t 3t 34+
\/—NT (d dO( 10) do( )do( o T ‘/_ao(oo)+0‘00 )10)- (6.37)

On the other hand, the BPS states (5.30), (p.31)), (F.34) and (p.35) cannot mix with the
other states.

We need to develop the hamiltonian formalism for the interacting theory to calculate
the corrections to the energy. The canonical conjugate momenta obtained from ([1.14),
([ET5) and (F.16) have the corrections proportional to g, compared with those in the free

energy, as follows.

Wy

Prmp = A (0™ YA v, — gD 0 M p JoMaps By by s AdsbMaps)s
JMp
51 o
Py = SXAB (=)™ XA = i9Chan gar soass [Bran, X35,
T
Pyatea = 01 /697y = i 17,01 (6.38)

We solve the equations of motion for the auxiliary fields Bjyr and cjjs iteratively with
respect to g and obtain

> _ g . mo—mmo+1m1JM
BJM - mrpr [(’L( 1) D]ll\/flpl Jo—Maps [AJ1M1P1’PJ2M2P2]
. mo—mso A Jo Mo m—m JaMsko A
+Z(71) Cj%l Ja— M [X-h]]g\/fl’PAB ]+(71) JlMlnlJfl\/[{w.]lI\/flnl’wflgMglmA})
+0(g%),
éynr = 0. (6.39)

By substituting (6.3§) and (B.39) into the hamiltonian,

H=> PpAsp+ Y PiFXH+ Y Pruwatfys, — L, (6.40)
JMp JM JMr
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we obtain

H= HO + Hinta

o =y 5 g 2
Hip = L)+ > 5——4J(J + 1) BB +O(g?), (6.41)
J#0,M
where Hy takes the same form as that in the free theory, and L% is given in (f.15).
In order to obtain the order g?N corrections to the energy, we calculate for the degen-
erate states, |\Sy), the matrix elements

ABGN = (Sl + Hing ot gt = (5,185 | 5,06.42)
where Fy is the unperturbed energy, and Hj,;3 and Hj, 4 is the 3-point and 4-point
interaction terms in H;,;, respectively, while H. 21 ~1o%P comes from the 1-loop counter terms
quadratic in the fields and is proportional to g?N.

We first calculate H g;}\/ for the states ([£24). It is easy to see that the matrix elements
among the states (f.24]) with fixed [ are closed in the g2V corrections. As an example, let
us see the contribution of the 4-point interaction in (p.41]),

2
HY, = _gz/dQTr([XAB,XCD][XAB,XCD])
2
= =500 ,Ciniuin (OROGH — 0GroE R I ( X p XEp X[TXE),  (6.43)

where we have introduced the abbreviated notations. j represents a pair of (J,M). —j
represents (J, —M ), and j = 0 represents to (J = 0, M = 0) in the following. We substitute

1
XM = —— (B + (1)) (6.44)
\/waf

into (b.43). We take the Wick contractions to obtain the normal ordered form. After the
contractions, we are forced to set j = 0 for the creation and annihilation operators that are
left in the normal ordering, because we consider the matrix elements among (}1.24). The

result is

X
Hl’nt

g ABt _CDyr 0 0
=—§:Tr(2[a0 yoq  leaps agp)

AB CD AB 0 C

— [og ™!, alipllag ™", alp) + [T, alip [l af ) ¢

592]\7 (_1)7712—7712 . AB

+ 2 Z wX C(j)}o"gcja—jzoiTr(ao TO‘OAB):

J2J3 J2
1592N3 (_1)m1*m1+m277~n2 .
* 4 wX X ij'szcjs—h—jn (6.45)
J1j233 J17J2
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where oz?4 B = a&{é\/l ):(00), and we have used ng = 1 in the first term in the righthand side.
We further evaluate the second term using » -,/ 5, (—1)™27 m2CéjQCj3_j2o = (2J2+1)20,.1,
and obtain
59°N AB
5 > (2 +1): Tr(ag Talg) 1, (6.46)
Jo

We see from () that the coefficient of the number operator in (p.46) is nothing but
2w2NO = — %N times the contribution of (X — €) to ITI¥_,(1). Indeed, the contribution

of the other 4—p01nt interactions and the 3-point interactions to this coefficient correspond

to the contribution of the other diagrams in (f.10). Note that the contribution of (X

a) + (X — b) comes from the second term of H;,; in (6.41)). Moreover, the contribution of

H) 7P t0 this coefﬁcient is ZX. The third term in (p.49) is a constant that contributes

equally to any (S, \H iy N1Sn). The sum of such constants that all the interactions yield

must be zero due to the supersymmetry. We ignore these constants hereafter. As in [ff],

we rewrite Tr([o SBT aAB][agDT adp)) in the first term as

: Tr([aéBT,a%B]Ta) Tr(T [, cbi ,alp]) s —2N : Tr(aOABTaoAB) 5 (6.47)

where T is the generators of U(N). As shown in [f], the first term annihilates the

states ([L.24). We eventually obtain for the states ([.23)
2 2
2N 9N 1 9N AB
Hegff - <_TH§=0(1) + R T) : Tr(ag TO‘?A&B) :
2

9 ABt _CD AB 0
==+ Tr(2[eg f » X THO‘ABaO‘CD] + [ TaQOCDH ATB’agD]) . (6.48)

The expectation value of HY, eff N with respect to the state (6.30) must vanish, because it
is BPS and does not mix with other states. The second term in (f.4§) annihilates the
state (B.30). Thus the coefficient of the number operator in the first term must vanish.

Namely, vx is determined as

1

=g (o) + 3). (6.49)

which in general depends on the cut-off and includes the finite renormalization.
The dilatation operator for the operators ([.23) on R* [23, pd] is

gYM AB yCDyp 4 d g  d d
2 3972 I‘( [ ’ ][dXAB7dXCD]+[ ’dXCD][ ABadX_CD] (6 50)

Recalling g2 gYM and comparing the remaining second term in (f.48) and (B.50)), we find
that the matrix elements of the order g?N corrections to the energy of the states ([.24)

completely agree with those of the 1-loop dilatation operator for the operators ([£23), as
expected.
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Let us determine other counter terms. For the states (p.31)),

3 3
5) + §B¢> : Tr(d,éLTdmA) :

+247 : Tr(dg'ozg‘BTdmAa%C) 5 (6.51)

where dpa = dom,0)4 and m takes +1. The states (6.3]) do not mix with the other

2
states, either. The expectation value of H f f}V with respect to the states must vanish. It is

2N 9°N ABf 0 2 nFTTY
HY; = R Tr(ogy  'aapg) i+ | g"NII;_ (-

evaluated as

ngN + (fNHfﬁo(—g) - ;m) —¢’N =0, (6.52)
from which we obtain
By = —@H?ZO(—S) + ngN- (6.53)
For the states (f-33)~(f-37),
H;
= 927]\7 : Tr(aéBTa%B) : —{—@ : Tr(df;LTdmA) :
+ <—2g:%ﬂfo(2) + wf;i(]) Tr(al am) :
_§ : Tr(ajnag‘BTamo&B) : _|_\/692(_1)m1+%(;’§;;n11m3 : Tr(dzzdﬁa%BamB) i +(c.c.)
g

L Tr(d? dPld_padmp—d2dPl A admp+dATdB dy pdpa+d AT AP dipd_ma)
(6.54)

where a,, = apim)+ and m takes 0, +1. The matrix elements of H é];}\f among (.39)
and (B.36) form the 2 x 2 matrix

Sx—g’N) F(x—g*N)
( %(X —g°N) %3(X +8¢%N) ) ’ (6.55)

where

X = Mm@ 5 (6.56)

Those among (.33) and (6.37) also form the same 2 x 2 matrix. In order for the BPS
energy not to receive any correction, one of the eigenvalues of this matrix must vanish.

This is true if and only if x = g2 N, namely, we obtain
1
va=9g°N <§H§‘:o(2) + 2) : (6.57)

In this case, the other eigenvalue is 392N, and (6.33) and ([-33) are the eigenvector for
the zero eigenvalue, while (B.36) and (b.37) are the eigenvector for the other eigenvalue.
There is no correction to the BPS energy, and there is no mixing between the BPS and
non-BPS states. It is also easy to see that the matrix elements among the BPS states ([.34))
and (p.35), which have no mixing with the other states, vanish.
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6.4 1-loop analysis of the truncated theories

So far we have been examining the 1-loop corrections in the original theory. It is easy to
generalize the analysis in sections 6.1~6.3 to the 1-loop perturbation theory around the
trivial vacua of the truncated theories. Consider the expression for a certain diagram in the
original theory. By keeping only the KK modes to be remained in each truncated theory,
in the external and internal propagators, one obtains the expression for the corresponding
diagram in the truncated theory. The plane wave matrix model is at least perturbatively
a finite theory, where no regularization is needed in the perturbative expansion, while
N =4SYMon R x S% and N =4 SYM on R x S3/Z,, give rise to divergences and must
be regularized. In the perturbative expansion of the latters, as a regularization scheme,
introducing the cut-offs for the loop angular momenta should be useful as in the original
theory, although we have not explicitly calculated the divergent parts of the diagrams
in those theories which are regularized in such a way. At any rate, we can proceed the
following arguments assuming N'=4 SYM on R x S%2 and N' =4 SYM on R x S3/Z;, are
appropriately regularized in terms of a certain regularization scheme.

One can also develop the hamiltonian formalism for the truncated theories. In partic-
ular, considering the states in ({..24)) and (B.Sd)w(m) makes sence, because X (%B , Yon+
and Agpr4+ are remained in all the truncated theories although the correspondence with

the operators on R* no longer exist. Furthermore, the truncated theories possess 16 super-
charges, and the states (5.30)~(f.35]) are also half-BPS, namely preserve 8 supercharges.
Their mass spectrum must not receive any quantum correction. The mixing of these states
with other states is the same as the original theory. The analysis of the g2N correction to
the energy of the states ([.24) and (F.30)~(F.37) runs parallel to the one in the original
theory, which is given below (p.42). It is easy to see that (p.4§), (F.51)) and (p.54) hold

for the truncated theories, and vx, 8y and 4 are determined as (£.49), (p.53) and (B.57),
respectively, in such a way that the supersymmetry is realized. Of course, the values of

I, (1), Hfﬁzo(—%) and I14_(2) depend on which theory is considered. In particular, in

the plane wave matrix model, vx, By and y4 are all zero, namely

1
H§:0(1) =Ty Hlﬁ:o(—i) =7 H?:O(Q) =—4 (6.58)

(X —¢)=—2 (X—e)=-5 (X-f)=6, (6.59)

The total of these values amounts to — 3. Note that the diagrams (X —a), (X —b), (X —d)
and (X — g) do not exist in this theory. Similarly, we obtained Hlﬁ:o(_%) and 117_,(2)
in (6.58) by calculating the diagrams in the plane wave matrix model.

The above arguments lead us to a following interesting conclusion. In the truncated
theories, the matrix elements of the g?N corrections to the energy of the states ([.23) are
mapped to the hamiltonian of the same integrable SO(6) spin chain that appear in the
original theory. Indeed, the authors of [R7] verified this fact in the plane wave matrix model
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by direct calculation. In [R7], the matrix elements of (f.51)) in the plane wave matrix model
are also obtained by direct calculation, and are consistent with the above arguments.

As a side remark, we checked that as in the original theory by making shifts of the
cut-offs in (p.2§) one can obtain the finite zero point energy in the truncated theories with
g = 0. Its value is zero for ' =4 SYM on Rx 52 and 7o N? for N' =4 SYM on R x 3 /7.
These two values are consistent, since in the k — oo limit N’ =4 SYM on R x S3/Z; is

reduced to A" =4 SYM on R x S2 [fl].

7. Time-dependent BPS solution

In this section, we examine a classical time-dependent BPS solution and the 1-loop effective
action around it in the original and truncated theories. In section 7.1, we construct the
time-dependent BPS solution of the original and truncated theories. In section 7.2, we
calculate the 1-loop effective action around it in the original theory, and in section 7.3 that
in the truncated theories.

7.1 Classical time-dependent BPS solution

We consider a configuration in which all the KK modes and matrix components except the
(1,1) component of X??g vanish. Namely,

%p(t) em®) ... 0
xp=xg-cey=x=| 0 VT )
0 0.0
It is easy to see that this assumption is a consistent truncation in the original and truncated
theories. Under this assumption, the classical action becomes

1,. )
Se = /dt 5%+ p"i = p?). (7.2)

The canonical momenta are read off as

p—ésc—ﬁ

P 5p ’

5S

l=—==p%) :
oy P (7.3)

The angular momentum in the (6,9) plane, [, is conserved and corresponds to the R charge
(Recall X34 = (X6 +iX9)/2). The energy possesses the BPS bound:

fop 2+l2+12>m (7.4)
TP Top Tl =1 '
When p, = 0 and [? = p?, the BPS bound is saturated. In this case, p = /|| = const.

and 1 = %t + const.. We can set p = v/I and 1 = t without loss of generality. That is, we
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AXg )(9

1/ N

Figure 5: BPS solution Figure 6: Non-BPS solution

consider the solution”’

1 - .
(X3 = 5\/Z e, (7.5)

For this solution, non-vanishing elements in (P.24]) are

5e(>\f)11 = 2(00(XAP) 11 Fi(XAP)11)7 g,
Se(A=a)11 = 2(00(Xap)11 £i(Xap)11)7 el (7.6)

The requirement 55)\’? =0 and 6. A_4 = 0 leads to e_3 = e‘:’L —=€_y= ei = 0 for the upper
sign and €_; = E}f_ =€_9 = ei = 0 for the lower sign. The solution is, therefore, a half
BPS solution. It preserves 16 supercharges for the original theory and 8 supercharges for
the truncated theories. The BPS solution corresponds to a circular motion in the (6,9)
plane (see Fig. [) while generic non-BPS solutions correspond to elliptical motions (see
Fig. ). The BPS solution is the classical counterpart of the lowest Landau level in the
Landau problem. The BPS solution is interpreted as the AdS giant graviton in the original
theory [[L]], and corresponds to a particular one of the spherical membrane solutions in the
plane wave matrix model, which were studied in [f].

7.2 1-loop effective action around the solution in the original SYM

We calculate the 1-loop effective action around the BPS solution in the original NV = 4
SYM, which was obtained in the previous subsection. Following the background field
method, we make a substitution

1 -
(X34)m — 5\/Z€’t5k1511 + (X34) i

Lo
(X12)k — 5\/Z€ or10m + (X12) - (7.7)

"This solution on R x S? is formally mapped to a vacuum with a nontrivial Higgs vev, (X34)11 = %\/Z,
on R*. However, in this situation the correspondence between the two theories breaks down, so that it seem
rather nontrivial to examine the quantum correction around this solution.
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in the gauge-fixed action I and keep the second-order in all fields.® Then we immediately
see that I;,; are only written by the (1,k) and (k,1) components, where k # 1, and as
far as the other components are concerned, I takes the same form as the free theory. We
can therefore forget the contribution of the other components. Moreover, the fields with
different k’s are decoupled and I takes the same form for each k. We can calculate the
effective action for a fixed k and multiply the result by NV — 1 to obtain the final answer.
(In the 't Hooft limit, the factor N — 1 can be replaced with N.) We omit the suffices for
the matrix components and absorb explicit time dependence into the fields:

1 . |
(X3a)1k — —=€"Z1, (Xi9)1k — —=e " 73,

% vz
X — —Y7 X — _Y*7 X N _Y7 X N —Y*7
(X24)1k V2! (X31)1% Nk (X14)1k okt (X23)1k o
(Ao)1ik — Ao, (Ai)k — A,
(W) — ef%t%’ W) — e 200 (e - e 2oy, (U] ) - e 2y,
W )1k — 25, (7)1 — e 6, W) — e2tor, ()i — elos. (7.8)

The resultant quadratic action is

l l
I= —/dtdQ N 23 (-8 — 20y + V2 - )2+ 5 (2125 + 112)
r=1,2

4
+) V(=8 + V2 =1 - )Y, + Aj(—V2 + 1) A
r=1

1 N N X
+V2(A(Zf — Zo) + AY(Z1 — Z3)) + Z\/j(Ao(aoZ1 + 00 Z2) — Ap(00Z1 + 00 Z3))

+ AN (=02 4+ V2 -2 - 1) A, —{—ngs (0o + i0°V;)ps + ZQDSSDS——ZSDS%

s=1
T T
+Vi(plo?o!T + ol 0?01 — pho el — ph o3
T
+ohooll + ol o5 — pho?el! — %Tazw)} : (7.9)

Note that the ghosts do not contribute to this calculation of the 1-loop effective action
because of the Coulomb gauge. We must also take into account the contribution of the
1-loop counter terms consisting only of X 45, We substitute the background in (F4) into
them. As far as the counter terms quadratic in X4 (b17) are concerned, there is the
contribution only from —2XTr(X,pX AB) which results in — [ dt%El, where yx is given
in (6.49). We will see below that this contribution is consistently needed for vanishing
of the 1-loop effective action around the time-dependent BPS solution. Among possible
counter terms quartic in X“45, the single trace ones are

Tr([Xap, Xop][X 4P, XP]), (7.10)
Tr(XapX2PXopX©OP), (7.11)

8In this subsection, we rescale all the fields back by g¢.
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and the double trace ones are

1 1
NTr(XABXAB)Tr(XCDXCD), NTr(XABXCD)Tr(XABXCD). (7.12)

(7.10) vanishes when the background is plugged in, while the double trace ones ([.19)
do not contribute in this case due to 1/N suppression. We can, therefore, determine the
coefficient of ([.11)) from the requirement of vanishing of the 1-loop effective action.

We make a mode expansion for all fields in ([.9). We first integrate over Ay and obtain
new terms that are quadratic in Z, and Z*. After the redefinition, (—1)"""ZJM — ZJM,

the action concerning Z, and Z; becomes
* * 1
— /dt [ZOO (=08 — 2idy — —l)ZOO + 79 (=03 + 2i0y — 5Z)Zgo
32+ 202

" 1
+ Y /dt [ZJM (1 - K03 —2i(1 — 2K1))dp — (w5 —1+§l+4KJ)Z{M
J#0,M

_ . 2 1 _AS*
+2) M(—(1 - K;)02 +2i(1 — 2K;))0 — (w5 —1+ 55 +4K ) z] ™
. 1 1
+Z{MY (K02 + Sl AK )2 ~™M" + 7 “M(K ;0% + Sl AK ) Z{M (7.13)

where

l 1

Kjy=-u—" .
T 24I(T+1) +1

(7.14)
In order to evaluate the 1-loop effective action, we use a formula
TrIn(82 — 2ipdy + m? / dt\/p? + m?2. (7.15)
It is easy to see that the contribution of Z{¥ and ZJ° to the effective action is
Iz = —gQN/dt\/m, (7.16)
and the contribution of Z{M and ZJM ((JM) # (00)) is

2N/dt > (VAP HI+V(2T +22+1)

(JM)#(00)

:—gQN/dt S @+ 12 (VA + 1+ /(2T +2)2 +1). (7.17)
J#£0

L7

We can evaluate the contribution of Y,., A; and the fermions in a similar way. The contri-
bution of Y, is

IYp= —4g2N/dtZ(2J + 13/ (@2J +1)2 +1. (7.18)
J
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The contribution of A; is

I = —2g2N/dt Z(QJ +1)(2J +3)\/(2J +2)2 4+ 1. (7.19)

The contribution of the fermions is

IV _4g2N/dtZ(2J+1)(2J—|—2)(\/(2J+2)2+l+ V2T +1)2+1). (7.20)

We also have the contribution of the 1-loop counter term, —ZXTr(X4pX ABY

t.(1) 2
Torp = N/dt— <H ) (7.21)
Besides, there can be a contribution of the 1-loop counter term ([.11]), which is quadratic
re t (2)

in [ and denoted by I We denote the sum of all the contribution by I'cf:

t.(1 (2
Teps = U0 + T2y + Thpy + Tlyy + Tl + Topf ) +Te77. (7.22)

Let us see that the sum of ([-I6)~([:20) vanishes. First, comparing the order [°
contribution in ([7.16)~(F.20) with (p.29), we find that it is nothing but the contribution of
the (1,k) and (k,1) components of the fields to the zero point energy, and we can ignore it

here. Next, the order /! contribution is evaluated as follows (we omit the common factor
lg?N [ dt):

v~ g
3
Iy = 3#0 (JQZ]tLll)) )
Y — =2 Z(?J +1)
R
Ity — 22 (47 +3). (7.23)

Comparing ([.23) with (B.1(), we find that the total of ([.23)) is equal to
1 1
§H§:0(1) + 1 (7.24)
This is canceled by (7.21)). Namely, we find
the order ! contribution in I'css = 0. (7.25)

Note that the righthand sides in ([.23) except the first line have correspondence with those
in (.10). If this correspondence also held for the first line in ([7.23), the order {* contribution

— 492 —



n I’eZJQf would be — 5 rather than _Z and the total of the righthand sides in ([.23) would
agree with 51_[ J:O( ). This agreement is naively anticipated because the background field
method usually gives the generating function of the 1PI diagrams. However, this is not
true in this case. Our result shows that in this case the loop expansion and the expansion
in [ do not commute.

Finally the order [? contribution in (f.I7)~([.20) is logarithmically divergent, while
the contribution of orders higher than second in [ are finite. At the second and higher
orders, therefore, one can shift J, over which the summation is taken. We set 2J = n and
shift n appropriately in (7.17)~([7-20) to obtain the following expressions, where we focus
only on these orders in [. For the second order, the upper bounds of the summations are
Ag or A, or Ay depending on the angular momentum of which field is summed. For higher
orders, they are set at infinity.

T+ Ty = =9 2N/dt< n+1)2\/n2+l+2(n+1)2\/m>7
n=0
Ly = ~Ag'N [ @S )P VEEIP

I = —gZN/dt< (n+1)(n+3)/(n+22+1+ ) (n— 1)(n+1)\/n2—+l> ,
n=1
Il _g2N/dt< 2(n+1)(n+2)vV(n+2)2 +1+4(n+1)*/(n+1)2 +1)
+2> n(n+1)v/n?+ l) . (7.26)
n=1

A naive sum of the righthand sides in ([/.26) is zero. This means that the sum of higher
orders in [ of the righthand sides vanishes,

the 1% contribution in I'cyr =0 (¢ > 3), (7.27)

and the second order also vanishes if A, A, and Ay differ only by constants. Otherwise,
we are left with certain finite contribution of the second order in [, which must be canceled
by the counter term (F.11]). Thus we can determine the coefficient of (F.11]). In particular,
in the case in which Ay, A, and A differ only by constants, the coefficient is determined
as zero. It should be emphasized that the value of vx which is determined in section 6.3
is consistent with vanishing of the 1-loop effective action around the time-dependent BPS
solution. We conclude that if the counter term quartic in X 4% is appropriately fixed,

Tess = 0. (7.28)

7.3 1-loop effective action in the truncated theories

As in section 6.4, it is easy to obtain the 1-loop effective action around the time-dependent
BPS solution in the truncated theories by using the result in the original theory. What
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should be done is to keep only the modes remaining in the truncations in (f.16)~(F.20).
Here we can make use of the multiplicities that we described in section 5.

We write down explicitly the expressions for I’eZJE)f, Ferf, I‘sz, F?ff’ Ffff and Fzﬁl)
in appendix E, where Fz'}fgcl) is again the contribution from the counter term, —VTX X
Tr(XapX“P). Besides, there can be the contribution from the counter term ([-11]) also
in the truncated theories. Those for the plane wave matrix model are given in (EI). Of
course, in this case, all the expressions are finite and there is no contribution from the
counter terms. Indeed the sum of the expressions in (E.I|) vanishes. In particular, the
total of the first order in [ is again g?NI(3II5_ (1) 4+ 1), which vanishes by itself as seen
in (p.5§). The expressions for ' = 4 SYM on R x S?, N’ = 4 SYM on R x S3/Z; with
k even and N' = 4 SYM on R x S3/Z; with k odd are given in (E.2), (E.3) and (E.4),
respectively. As for these three cases, one can ignore the zero-th order in [ on the same
ground as the case of the original theory. The first order in [ in each case vanishes if the
value of vx that was determined in section 6.4 is applied. The requirement of vanishing of
the second order in [ fixes the coefficient of ([.11]). It is easy to check that a naive sum in
each of (E.2), (E3J) and (E-4) vanishes (These expressions are counterparts of ([-26). This
means that the contribution of orders higher than second in [ in (E.), (E3) and (E4)
and, in addition, when Ay, A, and Ay differ only by constants, no contribution from the
counter term (f.11)) is needed and the coefficient of (f.11)) is fixed to zero. To summarize,
the contribution of the first order and orders higher than second in [ in 1-loop effective
action vanishes, and the coefficient of (f.11)) should be fixed in such a way that the second

order in [ vanishes.

8. Summary and discussion

In this paper we studied the dynamics of the original N' = 4 SYM on R x S3 and the
truncated theories by making a harmonic expansion of the original theory on S3. We
first developed the harmonic expansion on S3. We obtained the new compact formula for
the integral of the product of three harmonics (B.11]). Then we carried out the harmonic
expansion of ' = 4 SYM on R x S? including the interaction terms. Second, we described
the consistent truncations of the original SYM to the theories with 16 supercharges. We
realized the truncations by keeping a part of the KK modes of the original theory. In
particular, we verified that quotienting by the subgroup U(1) of SU(2) indeed yields N = 4
SYM on R x S2%, by comparing the modes of N’ = 4 SYM on R x S? and those of the
orignal theory with the modes with 7 = 0 kept ((f.6), (b.16) and (5.20)). In addition, we
explicitly constructed some of the non-trivial vacua of the N’ =4 SYM on R x S? in terms
of the KK modes (5.29), which are a part of the solutions discussed in [}, []. Third, we
calculated the 1-loop diagrams in the orignal theory by introducing the cut-offs for loop

angular momenta. We saw that this cut-off scheme gave the correct coefficients of the
logarithmic divergences, which are consistent with vanishing of the beta function and the
Ward identity (5.24). We determined the counter terms in the original and the truncated
theories in the trivial vacuum, by using the non-renormalization theorem of energy of the
BPS states. This told us that the 1-loop effective hamiltonians of the SO(6) sector for
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the orignal and the truncated theories are the hamiltonian of the same integrable SO(6)
spin chain. Finally we examine the time-dependent BPS solution ([.1]) in the original and
truncated theories, which are considered to correspond to the AdS giant graviton in the
original theory. We found that the 1-loop effective action around this solution vanishes
if the counter term quartic in X4 is appropriately fixed. This implied that the BPS
configuration is stable against the quantum corrections at the 1-loop level, as is expected.
There are some directions as extension of the present work. First, it is interesting to
consider the the non-BPS configuration (Fig. ﬁ) for the original and the truncated theories.
In particular, in the case of the plane wave matrix model, a series of such investigations is
done [R§-B(]. It is also interesting to investigate the dynamics of N'=4 SYM on Rx S? in
the non-trivial vacua (f.29). It would be also interesting to explore possibilities of another
solution for (5.24)-(p.26). In addition it would be nice to construct the vacua for N' = 4
SYM on R x S3/Z;, explicitly, to study the dynamics around those non-trivial vacua and
to find the electrostatic picture for the vacua of the truncated theories discussed in [fl].
Another interesting future direction is thermodynamics of the original and the truncated
theories [[J—[4, B]-B3]. We will work in these directions and report the result in the near
future. We expect our findings in this paper to give some insight to these subjects.
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A. Useful formulae for representations of SU(2)

In this appendix, we gather some useful formulae concerning the representation of SU(2),
most of which are found in [R4]. The relationship between the Clebsch-Gordan coefficient
and the 3 — 7 symbol is

i T2 s Jatmat2d L Jam
= (=1)rmeTea cypms : Al
<m1 mo m3> (=1) 2J5 +1 J1 —my J2 —ma2 ( )

The 3 — j symbol possesses the following symmetries

JioJy J3\ [ JaJs i (T S Jo
mi Mmo M3 N mo Mm3 1My N m3a 11 My

(1) < Ji Jz o ) — (—1yetbte ( J2 J1 T3 ) — (—1)etbe < J3 Ja i )

mi1 ms3 ma ma my1 ms3 m3 ma2 My
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Jl J2 J3 _ (_1)a+b+c J1 J2 J3 (A 2)
mi Mg M3 —my —mg —ms | )

In section 6 and appendix D, we frequently use a summation formula for the 3 — j symbol

Ji J2 T3 Ji Sy T3 1
SR S N A3
Z <m1 mo m3> <m1 mo m3’ 2J3+1 J3J3 s ( )

mima

In section 3, we use a formula for the 9 — j symbol

abc
de f
ghyj
= [(2c+ 1)(2f +1)(2g + )(2h + 1)]72(2j + 1)

cy fe v gn hu  ~jv
Z Caa b,@Cdé eeCc'y fapcaa d5Cb6 engn hu”
apfyéepnpy

(A.4)

B. Vertex coefficients

In this appendix, we give expressions for the vertex coefficients we defined in section 3.
These expressions are obtained by using the formula (B.11). In the following, Q = J+ %,

Q=J- %, U=J+ ITT”” and U = J + 1TT“. Suffices on these variables must be

understood appropriately.

JiM 2/ +1)2J5+1) .y i
ChaMy JaMs = \/ o7 11 Coams sms Clarig dyring: (B.1)
p1tr2
DI o sartzpe = (1) 2N B2+ 1)@+ 203 +1)(2 + 1) (22 + 203 + 1)
Q1 Q11
: J L
Xq @2Q21 CQTM1 Q2m2CQ71n7h1 Qama’ (B.2)
J J O

5J1M1p1 JaMzpz J3M3p3

= \/6(2J1 +1)(2J1 + 202 +1)(2J2 + 1)(2J2 + 2p3 + 1)(2J3 + 1)(2J3 + 203 + 1)

S o
x(—l)_%ﬂ g; g; 1 Q1 Q2 Q3 Q1 Q2 Q3 (B.3)
Qg Qg 1 mi1 m9o Mms ml ’ﬁ”&g ’ﬁ”&g ’
Uy Uy & -
Foae o =vV2QJ+1)220 +1)(2): +2) Us Us & » I Jmcg;;;l o (B4)
J J O
GIAE = (12620 + 1)(2J2 + 2)(2] + 1)(27 + 292 + 1)
Uy Uy 3 N
X QU U 30 COL on it g (B.5)
Q Q1
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C. Spherical harmonics on S?

In this appendix, we summarize the definitions and the properties of the spherical harmon-
ics on S2. We set the radius of S? to u~'. Construction of the spherical harmonics on S?
proceeds parallel to that of the spherical harmonics on S3. We again identify S? with a coset
space: S%2 = G/H = SO(3)/SO(2). The generators of G = SO(3) are Jy, Jo J3, and the
generator of H = SO(2) is J3. The representative element of G/H is Y/ () = e~ #/3¢=1#0J2,
where €' = (6, ) is the polar coordinates of S2. The spin L spherical harmonics is defined
by

Vi = nf(Jq Y Q)] Tm), (1)

where J takes L, L+ 1,L + 2,--- while g takes L or —L, and n{j = L;l for L # 0 and
ng = +/2J + 1. The spin L spherical harmonics has the following properties.

/dQ/ Z (yiqml)*yiqmg - 5J1J25m1m27

q==+L
nlinkenls
dQ/(yL1Q2+q3)*yLQQ2 Lzqs _ "J1""J2 ""J3 ~Jig2+q3 CJ1m1
Jimy Joma¥ Jzmz T 2J;1 + 1 Jaqa J3qz " Jamea Jymg?

Y5y = (—nyatmyl e

ViVE — 0L (gl (—ip) XN Tm),  for i = 1,2,
VEVIL = i (=J(J + 1) + @)VSE (C.2)

The scalar spherical harmonics is defined by Yy, = yf}?n (J=0,1,2,---). The spinor
13.)
51500 ) :
spherical harmonics is defined by Y . | = %(—y}in +Yi Y and Y, ., = —ﬁ(y}lm +

1
spherical harmonics is defined by Yjm. = y;ﬁ (J = The transverse vector

y};}) (J =1,2,...) while the longitudinal vector spherical harmonics is defined by Y}mi =

€;Yi . (J=1,2,...). These spherical harmonics satisfy the following identities.

mj
VY = =2 J(J 4+ 1)Ym,
1
v2Yvao¢ - _ﬂ2(J(J + 1) - Z)YJmou

VA = 2T+ 1) - )Y

. . 1
(Vi £ ZVZ)Yij:% = —ip(J + §)YJm:F%7
viY}mz =0,
ViYh o= =TT +1)Y,

1
}mi = iYJm7
ur/J(J +1)

€jVi¥im; = =/ J(J + 1)Yim,
€ij ViVl = 0. (C.3)
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D. 1-loop divergences

In this appendix, we give the 1-loop diagrams and the divergent part of each diagram. The
nine diagrams for the 1-loop self-energy of A; which is (—i) times the 1-loop contribution to
the 1PI part of the truncated 2-point function (A jar,(q)ki Ay vy (—q) ) are shown in Fig.
7. The six diagrams for the 1-loop self-energy of Ay which is (—%) times the 1-loop contribu-
tion to the 1PI part of the truncated 2-point function(B jas(q)ki B arr(—q)r) are shown in
figure 8. The diagram for the 1-loop self-energy of ¢ which is (—¢) times the 1-loop contribu-
tion to the 1PI part of the truncated 2-point function (¢ ns(q)kiCyarr(—q)grrr) are shown in
figure 9. The three diagram for the 1-loop self-energy of 14 which is (—i) times the 1-loop
contribution to the 1PI part of the truncated 2-point function <w§M5(Q)kle/M/R/A/(Q)kl/>
are shown in figure 10. The two diagrams for the 1-loop correction to the ghost-ghost-
gauge interaction term which is (—¢) times the 1-loop contribution to the 1PI part of the
truncated three point function (A arp(q)kics v () kv Eyrar (¢”)inr) are shown in figure
11. The five diagrams for the one-loop correction to the Yukawa interaction term which is
(—1) times the 1-loop contribution to the 1PI part of the truncated three point function
<(Xj%(q>)kl1/}f]1/l (q/)k’l’wﬁll (q/l)kul//>, are shown in ﬁgure 12.
The 1-loop self-energy of A; takes the form

gQN(Skl/(Slk/(—1)m7m+15JJ/5M,M/5pp/H§(q). (D.l)
We list the the divergent part in the contribution of each diagram to Hf(q).
2i6(0)

(A—a)= Z Dyymty 51010 T—MpD gy —aty Jo— M0 07— M7
J1,Ja£0, My My 4/ I (J1 + 1) Ja(Jo + 1)
2i5(0)
(A-10) = [ Dyt 3y M10 T-MpDr— My Jo— M0 37— M7
Jl,Jggl\/IlMg 4\/J1(J1+1)J2(J2+1) 242 J141 1 1 J2 2
2i6(0) 5
To(Jp 1+ 1) DVeMa 1810 I-MpD o=z 5i=dr0 =11y |
—2i6(0
(A—c)= Z ngl) |:DJ2M2 J=Mp I M10D Jo— My 7' =M ot T, =M1 0
Jot=0,J My My 2\72
+D gty T—Mp s M+ D gy iy - JlMli} ,
2i6(0
(A—d)= Z W(JEI)DJQMQ JiMy+,J=MpD gy My =M — o Js M5+
2(J2

Ja#£=0,J1 My Mo

4 2 2 2
—=AZ2—2A, — |2+ 227 +2)%2 + 2| log(2A
T, 5+ 22727+ 2 ogon),

8 20 4
(A—e)=—2A% - A, + 3 log(24),

3703

4 10 ¢ 18 14
A—f)==-A2+ A, + | ==+ —(J+1)2 - —| log(2A
(A== a2 g+ [T B2 - 3 ogen)
(A—g)=—12A% — 18A,,

1

(A—h):4Af+6As+§[q2—(2J—|—2)2] log(2A),

32 64 4
(A—i)= ?Afc + gAf +3 (> — (27 +2)?] log(2A). (D.2)
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Note that the terms proportional to 6(0) cancel among (A —a) ~ (A — d).
The 1-loop self-energy of Ag takes the form

PPN Sy (—=1)™ ™8 1 o Sas— a0 115 (q). (D.3)
We list the the divergent part in the contribution of each diagram to IIZ(q).
(B —a) = 4A2 + 10A, — 2log(2A),
(B —b) = —4A2 — 10A, + {2 + ?J(J + 1)] log(240),

(B—c)= —%J(J +1)log(2A),

(B —d) = 12A2 + 18A,,

(B —e) = —12A? — 18A, + 2J(J + 1) log(2A),

(B—f) = 1—36J(J +1)log(2A). (D.4)

The 1-loop self-energy of ¢ takes the form
9° Ny b (=)™ 6 1 prbar— a1 (q). (D.5)

The divergent part in the contribution of the diagram to I15(q) is

2
(G—a)=4iJ(J+1) <—§> log(24A). (D.6)
The 1-loop self-energy of ¥* takes the form
9PN Sk Ou1r 8.7 7001 20 O 04115 (). (D.7)

We list the the divergent part in the contribution of each diagram to Hlﬁ(q).

(F—a)= (%q - én(?J + ;)) log(2A),

(F—b) = (gﬁ(QJ + ;)> log(2A),

(F—c)= g (q + (2] + §)> log(2A). (D.8)

The two diagrams for the one-loop correction to the ghost-ghost-gauge interaction term
vanish:

(GV —a)=0, (GV —=0b)=0. (D.9)
The 1-loop correction to the Yukawa interaction term takes the form
2ig> N4 5 <5k,/5k,l//5k,,l(—1)m’—m’+%F%”%’Cg’,’ oM

s’

’
"l T MK
+ 6k‘l”5k"l6k”l’(_]‘)m m 2 FJ//?]\IJ//H// J3M3>

x2md(q + ¢ + q")I‘?,/J/J,, (q,q"). (D.10)
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We list the the divergent part in the contribution of each diagram to 'Y ;. (¢, ¢").
1
(Y —a)= 3 log(2A),
1
(¥ —b) = Hlog(2A),

(v ) = § log(2A),
(Y — d) = log(20),

(Y —e)=0. (D.11)
(A-a) (A-b) (A-c) (A-d)
(A-e) (A-f)
’ ’. ~
ol roo:
(A-g) (A-h) (A-1)

Figure 7: Diagrams for the one-loop self energy of A;. The curly line represents the propagator
of A;. The wavy line represents the propagator of Ag. The dotted line represents the propagator
of the ghost. The solid line represents the propagator of X 4. The dashed line represents the
propagator of 1.

E. 1-loop effective action in the truncated theories

In this appendix, we give the expressions for the 1-loop effective action around the time-
dependent BPS solution in the truncated theories. In the expressions, we omit the factor
g>N [ dt to make them compact.

The 1-loop effective action in the plane-wave matrix model is

FerOf:—\/ZL"‘l,

LY =—4V1+1,
Thy=4(VA+14+V1+1). (E.1)
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&M@Wm

(B-a) (B-c)
/ > N
W \AY
\ - /
(B-d) (B-e) (B-f)

Figure 8: Diagrams for the one-loop self energy of Ag. The curly line represents the propagator
of A;. The solid line represents the propagator of X 45. The dashed line represents the propagator

of 4.

Figure 9: Diagram for the self-energy of the ghost. The curly line represents the propagator of

A;. The dotted line represents the propagator of the ghost.

-»ﬁ»- - - = > - -»Q»-

(F-a) (F-b) (F-c)

Figure 10: Diagrams for the one-loop self energy of 1. The curly line represents the propagator

of A;. The wavy line represents the propagator of Ag. The solid line represents the propagator of

X 4p. The dashed line represents the propagator of 4.

The 1-loop effective action in A' =4 SYM on R x §2is

Feff__v4+l
reff_—z (2J + D)(VAT2 + 14+ /(2T +2)2 +1),

JE€Z~o
LY =—4 Z (27 +1)\/(2J +1)2 +1,
JGZZO
Tdhr=— > (2J+3)V2I+22+1+2J+1)/(2T +2)> +1),
JEZZO
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(GV-a) (GV-b)

Figure 11: Diagrams for the one-loop correction to the ghost-ghost-gauge interaction vertex. The
curly line represents the propagator of A;. The dotted line represents the propagator of the ghost.

-..w‘- -’.U‘-

(Y-c) (Y-d)

Figure 12: Diagrams for the one-loop correction to the Yukawa interaction. The curly line repre-
sents the propagator of A;. The wavy line represents the propagator of Ag. The solid line represents
the propagator of X 4. The dashed line represents the propagator of 1)4.

Thr=2 > 2J+2)(V/@I+22+1+/(2] +1)2+1)
JEZ>g

2 > T+ D@+ 22+ 1+ /2T +1)2 +1),
Je+Zs

2
ot g°Nl 1
Tefy = =5 <H§zo(1) + 5) : (E.2)

The 1-loop effective action in N' =4 SYM on R x S3/Z;, with k even is

FerOf:—\/4 l,

k k
By kg

Thr=—1{ 2 2.+

n€Z~qo v=0 v=1 n—0

(kn+42v+1)2n + 1)(\/(kn + 20)2 + 1+ /(kn + 20 +2)2 + 1),

,52,



-1
TYp=—4 > > (kn+20+1)2n+1)y/(kn+2v+1)2+1,

n€Zx>qo v=0

l\.’)l?&"

E_q

eff—— Z an+2v+3 (2n + 1)/ (kn +2v +2)2 +1
neZxo v=0

-1 > + (kn 420 —1)(2n + 1)\/(kn + 2v)2 + 1,
n€Z~qo v=0 v=1 n—0

|
=23 Zk:n—i—2v+2)(2n+1)(\/(/<:n+2v+2)2+l+\/(kn+21)+1)2+l)

nEZZO v=0

+2 Y + QZ (kn + 2v)(2n + 1)
1

1
n€Zso v=0 v=1]_g
(Vkn+20+ 12+ 1+ /(kn+20)2 +1),

Tefs = —g—Nl (H o(1) + %) : (E-3)

k k

2

The 1-loop effective action in N'=4 SYM on R x S3/Z, with k odd is

n=0

(k:n—|—2v+1)(n—|— D(V(kn+20)2 + 1+ /(kn + 20 +2)2 +1)

- Z an+2v (V(kn+20—1)2+1+/(kn+20+1)2+1),

n€Zyo v=1

_1
2

p=—4 > > (kbn+20+1)(n+1)/(kn+20+1)% +1

”GZZO v=0

to\?r

[Nl

_1
2

—4 Z Z(lm—i—%)n (kn + 2v)2 + 1,

n€Z>0v:1
k1
2 2
eff—— Z Z (kn +2v +3)(n+ 1)\/(kn + 20+ 2)2 +1
neZxo v=0
E 1 k1
2 2 2 2

-1 > Y+ Z (kn +2v — 1)(n 4+ 1)y/(kn + 20)2 +1

n€Z~o v=0 v=1 n—=0
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tol?r
MIH

— Z Z ((kn 4204 2)n/(kn+ 20+ 1)2 +1

nEZZO v=1

(kn—|—21)—2 yny/(kn +2v —1)2+1),

=23 Z (kn+20+2)(n+1)(v/(kn +2v +2)2 + 1+ /(kn +2v + 1)2 +1)

ne€Z>o v=0

kE_1 k
2

+2 > -

n€Z~o v=0 v=1

1
2

N
V)

(]

n=0
(kn 4+ 20)(n + 1)(v/(kn + 20+ 1)2 + 1+ /(kn + 20)2 +1)

MI??‘
MIH

+2 Z Z (kn +2v + Dn(y/(kn 4+ 20 + 1)2 + 1+ /(kn + 20)2 +1)

nEZZO v=1

+(kn 4 2v — Dn(v/(kn 4+ 20)2 + 14+ /(kn +2v — 1)2 4+ 1)),

refy = -0 () + 7). (B.4)
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