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1. Introduction

It is important to collect various examples of the gauge/gravity correspondence in order

to elucidate how universal this phenomena is. Recently this direction has been pursued

successfully by Lin and Maldacena [1]. They gave a general method for constructing the

gravity solutions dual to a family of theories with 16 supercharges. All these theories share

the common feature that they have a mass gap, a discrete spectrum of excitations and a

dimensionless parameter, which connect weak and strong coupling regions. This method

is an extension of the so-called bubbling AdS geometries [2 – 4]. The symmetry algebra of

some of the theories is SU(2|4) supergroup, while the other theories have SO(4)× SO(4)

symmetry. The theories with the SU(2|4) symmetry arise as consistent truncations of

N = 4 super Yang Mills (SYM) on R × S3 as explained below. They include the plane

wave matrix model [5], N = 4 SYM on R× S2 [6] and N = 4 SYM on R× S3/Zk.

N = 4 SYM on R × S3 has the superconformal symmetry SU(2, 2|4), whose bosonic

subgroup is SO(2, 4)× SO(6), where SO(2, 4) is the conformal group in 4 dimensions and

SO(6) is the R-symmetry. SO(2, 4) has a subgroup SO(4) that is the isometry of the S 3

on which the theory is defined. SO(4) is identified with SU(2)× S̃U(2), where we marked

one of two SU(2)’s with a tilde to focus on it. By quotienting the original N = 4 SYM on

R × S3 by various subgroups of S̃U(2), one obtains the above mentioned theories whose

symmetry algebra is SU(2|4). Quotienting by full S̃U(2), U(1) and Zk give rise to the plane

wave matrix model, N = 4 SYM on R × S2 and N = 4 SYM on R× S3/Zk, respectively.

Indeed, the consistent truncation to the plane wave matrix model was first found in [7].

The original N = 4 SYM on R × S3 has a unique vacuum, while the truncated theories

have many vacua. The method by Lin and Maldacena give in principle gravity solutions

that describe these vacua and fluctuations around them, and they indeed obtained a few

explicit solutions [1].

It is obviously relevant to study the dynamics of the above truncated theories and

compare the results with those obtained on the gravity side. Indeed, some studies on the

dynamics of the plane wave matrix model have already been carried out [6]–[8]. It should

also be worthwhile to study the original N = 4 SYM on R × S3 itself [9]–[10], although

it is believed to be equivalent to N = 4 SYM on R4 at conformal point, which is much

easier to analyze. The reasons are as follows. First, the pp-wave limit on the gravity side

is taken for AdS5×S5 in the global coordinates, and the boundary of AdS5 is R×S3. The

holography in the pp-wave limit could, therefore, be well understood in N = 4 SYM on

R × S3. Next, the original theory has a classical time-dependent BPS solution, which is

considered to correspond to the AdS giant graviton [11, 4]. The quantum dynamics of the

AdS giant graviton is expected to be understood by examining the quantum fluctuation

around this classical solution. The classical solution is, however, mapped to a classical

vacuum solution of N = 4 SYM on R4 that breaks the conformal symmetry, so that the

equivalence between N = 4 SYM on R × S3 and R4 does not seem to hold in this case.

Third, one can consider N = 4 SYM on S1 × S3, which is the finite temperature version

of N = 4 SYM on R × S3 and is not equivalent to N = 4 SYM on R4. This theory is

known to show a phase transition [12 – 14], which should correspond to the thermal phase
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transition between the AdS space and the AdS black hole [15]. The study of N = 4 SYM

on R× S3 serves as a preparation for that of this theory.

In this paper, we study the dynamics of the original N = 4 SYM on R × S3 and the

truncated theories, by making a harmonic expansion of the original theory on S 3. We

obtain each of the truncated theories by keeping a part of the Kaluza-Klein (KK) modes

of the original theory. This enables us to analyze all of the original and truncated theories

in a unified way.

In section 2, we review basic properties of N = 4 SYM on R × S3. In section 3, we

develop the harmonic expansion on S3. In particular, we obtain a new formula for the

integral of the product of three harmonics, which is used in the following sections. In

section 4, by applying the results of section 3, we carry out a harmonic expansion of N = 4

SYM on R × S3 including all interaction terms. The result in this section is an extension

of the work [7], where the authors carried out the mode expansion of the free part in detail

and analyzed interactions between the lowest modes needed for the truncation to the plane

wave matrix model.

In section 5, we describe the consistent truncations of the original N = 4 SYM on

R × S3 to the theories with SU(2|4) symmetry. We realize each quotienting by keeping a

part of the KK modes of the original theory. We verify that quotienting by U(1) indeed

yields N = 4 SYM on R × S2 by comparing the KK modes we kept with the KK modes

of N = 4 SYM on R× S2. We explicitly construct some of the nontrivial vacua of N = 4

SYM on R× S2 in terms of the KK modes.

In section 6, we first calculate 1-loop diagrams in the original theory. We introduce

cut-offs for loop angular momenta and see that this cut-off scheme yield correct coefficients

of logarithmic divergences, which are consistent with the Ward identities and the vanishing

of the beta function. We next determine some counter terms in the original theory and the

truncated theories in the trivial vacuum by using the non-renormalization of energy of the

BPS states. This reveals that the states built by the sequence of the scalars in both the

original theory and the truncated theories in the trivial vacuum are mapped to the same

integrable SO(6) spin chain.

In section 7, we examine the time-independent BPS solution in the original and trun-

cated theories, which is considered to correspond to the AdS giant graviton in the original

theory. We see that the 1-loop effective action around this solution vanishes.

Section 8 is devoted to summary and discussion. In appendix A, we gather some

formulae concerning the representation of SU(2). In appendix B, we describe the vertex

coefficients which are used in representing the interaction terms by the modes. In appendix

C, we describe some properties of the spherical harmonics on S2, which are used in section

5. In appendix D, we list the 1-loop diagrams and the divergent parts of those diagrams.

In appendix E, we give the expressions for the 1-loop effective action around the time

dependent BPS solution in the truncated theories.

2. Basic properties of N = 4 SYM on R× S3

In this section, we review the basic properties of N = 4 SYM on R × S3 [9]–[10]. We
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restrict ourselves to the U(N) gauge group and the ’t Hooft limit throughout this paper.

However, the generalization to other gauge groups that allow the ’t Hooft limit is easy.

We follow the notation of [10] with slight modification. We set the radius of S 3 at one.

Borrowing the ten-dimensional notation, we can write down the action as follows:

S =
1

g2
YM

∫
d4x e Tr

(
−1

4
FabF

ab − 1

2
DaXmD

aXm −
1

12
RX2

m

− i
2
λ̄ΓaDaλ−

1

2
λ̄Γm[Xm, λ] +

1

4
[Xm, Xn]2

)
, (2.1)

where a and b are local Lorentz indices and run from 0 to 3, and m runs from 4 to 9. Γa

and Γm are the 10-dimensional gamma matrices, which satisfy

{Γa,Γb} = 2ηab, {Γm,Γn} = 2δmn, (2.2)

where ηab = diag(−1, 1, 1, 1). λ is the Majorana-Weyl spinor in 10 dimensions. e is the

determinant of the vierbein eaµ on R × S3. R is the scalar curvature of S3 which is equal

to 6. The field strength and the covariant derivatives take the form

Fab = ∇aAb −∇bAa − i[Aa, Ab] = eµae
ν
bFµν ,

DaXm = ∇aXm − i[Aa, Xm],

Daλ = ∇aλ− i[Aa, λ], (2.3)

where

∇aAb = eµa(∂µAb + ω c
µb Ac), ∇aXm = eµa∂µXm, ∇aλ = eµa(∂µλ+

1

4
ωbcµ Γbcλ), (2.4)

and ωabµ is the spin connection on R× S3 determined by dea + ωab ∧ eb = 0.

The classical action (2.1) with arbitrary gauge group has the superconformal symmetry

SU(2, 2|4). This symmetry is preserved at the quantum level. This is ensured by the

following two facts. One is that the Weyl anomaly for the gYM = 0 was shown to vanish

on R× S3 [16]. The other is that the beta function vanishes for arbitrary gYM because it

only reflects the short distance structure of the theory and indeed vanishes on R4. In what

follows, we describe the transformation laws of the fields under each element of SU(2, 2|4)

and see that the action (2.1) is invariant under such transformations.

First, let us see the conformal invariance of the action. If the metric and the vierbein

were allowed to vary, the action would possess the Weyl invariance,

δWAa = −αAa, δWXm = −αXm, δWλ = −3

2
αλ, δW e

a
µ = αeaµ, (2.5)

the diffeomorphism invariance,

δξAa = ξµ∂µAa, δξXm = ξµ∂µXm, δξλ = ξµ∂µλ,

δξe
a
µ = ξν∇νeaµ +∇µξνeaν . (2.6)

and the local Lorentz invariance,

δLAa = ε baAb, δLXm = 0, δLλ =
1

4
εabΓ

abλ, δLe
a
µ = εabe

b
µ. (2.7)
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Let ξ be a conformal Killing vector satisfying

∇aξb +∇bξa =
1

2
∇cξcηab, (2.8)

and set α = − 1
4∇aξa and εab = ξµωµab + 1

2(∇aξb −∇bξa). Then,

(δξ + δW + δL)eaµ = 0. (2.9)

The action is, therefore, invariant under the conformal transformation δc = δξ + δW + δL,

where the metric and the vierbein are fixed. The conformal transformation act on each

field as follows:

δcAa = ξb∇bAa +∇aξbAb,
δcXm = ξa∇aXm +

1

4
∇aξaXm,

δcλ = ξa∇aλ+
1

4
∇aξbΓabλ+

3

8
∇aξaλ. (2.10)

It is often convenient to rewrite the action in the the SU(4) symmetric form. The

10-dimensional Lorentz group has been decomposed as SO(9, 1) ⊃ SO(3, 1) × SO(6). We

identify SO(6) with SU(4). We use A,B = 1, 2, 3, 4 as the indices of 4 in SU(4) while we

have used m,n = 4, · · · , 9 as the indices of 6 in SO(6). The SO(6) vector, 6, corresponds

to the antisymmetric tensor of 4 in SU(4). The SO(6) and SU(4) basis are related as

Xi4 =
1

2
(Xi+3 + iXi+6) (i = 1, 2, 3),

XAB = −XBA, XAB = −XBA = X†AB , XAB =
1

2
εABCDXCD, (2.11)

Similar identities hold for the gamma matrices:

Γi4 =
1

2
(Γi+3 − iΓi+6), etc. (2.12)

The 10-dimensional gamma matrices are decomposed as

Γa = γa ⊗ 18, ΓAB = γ5 ⊗
(

0 −ρ̃AB
ρAB 0

)
= −ΓBA, (2.13)

where γa is the 4-dimensional gamma matrix, satisfying {γa, γb} = 2ηab, and γ5 = iγ0γ1×
γ2γ3. ΓAB satisfies {ΓAB ,ΓCD} = εABCD, and ρAB and ρ̃AB are defined by

(ρAB)CD = δACδ
B
D − δADδBC , (ρ̃AB)CD = εABCD. (2.14)

The charge conjugation matrix and the chirality matrix are given by

C10 = C4 ⊗
(

0 14

14 0

)
, Γ11 = Γ0 · · ·Γ9 = γ5 ⊗

(
14 0

0 −14

)
, (2.15)
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where (Γa,m)T = −C−1
10 Γa,mC10 and C4 is the charge conjugation matrix in 4 dimensions.

The Majorana-Weyl spinor in 10 dimensions is decomposed as

λ = Γ11λ =

(
λA+
λ−A

)
, (2.16)

where λ−A is the charge conjugation of λA+:

λ−A = (λA+)c = C4(λ̄+A)T , γ5λ± = ±λ±. (2.17)

The action is rewritten in terms of SU(4) symmetric notation as follows:

S =
1

g2
YM

∫
d4x e Tr

(
−1

4
FabF

ab − 1

2
DaXABD

aXAB − 1

2
XABX

AB − iλ̄+Aγ
aDaλ

A
+

−λ̄+A[XAB , λ−B ]− λ̄A−[XAB , λ
B
+] +

1

4
[XAB , XCD][XAB , XCD]

)
,

(2.18)

It is easy to see that the action (2.18) is invariant under the SU(4) R-symmetry

δRX
AB = iTACX

CB + iTBCX
AC , δRλ

A
+ = iTABλ

B
+, δRλ̄−A = −iλ̄−BTBA, (2.19)

where TAB is a hermitian traceless matrix.

Finally, we consider the superconformal symmetry. The conformal Killing spinor equa-

tion on R× S3 takes the form

∇aε+ = ± i
2
γaγ

0ε+, γ5ε+ = ε+. (2.20)

A general solution to (2.20) for each sign includes arbitrary constant Weyl spinor and is

obtained by projecting the Killing spinor on AdS5 on the boundary [9, 17]. We construct

a 10-dimensional Majorana-Weyl spinor as

ε =

(
εA+
ε−A

)
, (2.21)

where εA+ satisfies (2.20) and ε−A is the charge conjugation of εA+ and satisfies

∇aε−A = ∓ i
2
γaγ

0ε−A, γ5ε−A = −ε−A. (2.22)

The action (2.1) is invariant under the superconformal transformation

δεAa = iλ̄Γaε, δεXm = iλ̄Γmε,

δελ =

[
1

2
FabΓ

ab +DaXmΓaΓm − 1

2
XmΓmΓa∇a −

i

2
[Xm, Xn]Γmn

]
ε. (2.23)

ε+ in (2.20) includes four real degrees of freedom for each sign as mentioned above and

there are four SU(4) indices, so that ε in (2.21) possess 32 real degrees of freedom. Namely,

– 6 –
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the superconformal symmetry (2.23) has 32 real supercharges. In the SU(4) symmetric

notation, the transformation (2.23) is written as

δεAa = i(λ̄+Aγaε
A
+ − ε̄+AγaλA+),

δεX
AB = i(−ε̄A−λB+ + ε̄B−λ

A
+ + εABCDλ̄+Cε−D),

δελ
A
+ =

1

2
Fabγ

abεA+ + 2DaX
ABγaε−B +XABγa∇aε−B + 2i[XAC , XCB ]εB+,

δελ−A =
1

2
Fabγ

abε−A + 2DaXABγ
aεB+ +XABγ

a∇aεB+ + 2i[XAC , X
CB ]ε−B . (2.24)

In the remaining of this section, we make a comment on the equivalence between N = 4

SYM on R4 at conformal point and N = 4 SYM on R × S3. We first see the relationship

between R4 and R× S3. If one starts with the metric of R4,

ds2 = dr2 + r2dΩ2
3, (2.25)

makes a change of variable, ln r = τ , and defines a new metric through a Weyl transfor-

mation, ds2 = e2τds′2, one obtains the metric of euclidean R× S3,

ds′2 = dτ2 + dΩ2
3. (2.26)

The analytical continuation, τ = it, yields the metric of R× S3. This indicates how these

two theories are related. There is one to one correspondence between operators on R4

and states on R × S3 as common in conformal fields theories. Namely, one can move an

operator at arbitrary point on R4 to the origin by a conformal transformation, and map

it to an state on R × S3 because r → 0 corresponds to t → −∞. One can also see from

ln r = τ that the dilatation operator on R4 corresponds to hamiltonian on R × S3. That

is, the scaling dimension ∆ on R4 corresponds to the energy E on R× S3. More precisely,

there is the Casimir energy, E0, on S3. Thus ∆ = E −E0. The value of E0 is for instance,

calculated through the Weyl anomaly near R4 and equal to 3
16N

2 [16]. In this paper, for

simplicity, we redefine the hamiltonian by H → H − E0 and make energy of the vacuum

vanishing, so that ∆ = E holds. Note that this equivalence holds only at conformal point

on R4 and breaks for instance in a situation where the Higgs field has a non-vanishing vev

on R4.

3. Harmonic expansion on S3

In this section, we develop the harmonic expansion on S3. In section 3.1, we consider

generic spherical harmonics on S3 and obtain a formula for the integral of the product

of three spherical harmonics. In section 3.2, we restrict ourselves to scalar, spinor and

vector harmonics and describe some useful properties. We define vertex coefficients by the

integrals of the products of these harmonics. In section 3.3, we find the vector and spinor

harmonics that correspond to the conformal Killing vectors and spinors, which appeared

in section 2.
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3.1 Spherical harmonics on S3

First, we construct the spherical harmonics on S3, following the strategy in [18], where the

harmonic functions on the coset space G/H are discussed. In this case, S3 = SO(4)/SO(3),

namely G = SO(4) = SU(2) × S̃U(2) and H = SO(3). The subgroup H = SO(3) is

naturally identified with the local ‘Lorentz’ group SO(3) on S3. We denote the generators

of the SU(2) in G by Ji and those of the ˜SU(2) in G by J̃i ,where i = 1, 2, 3. Then, the

generators of H are represented by Li = Ji + J̃i.

The irreducible representations of G are labeled by two spins, J and J̃ , which specify

the irreducible representations of the SU(2) and the S̃U(2), respectively. We denote the

basis of the (J, J̃) representation by |Jm〉|J̃ m̃〉. The basis of the spin L representation of

H is constructed in terms of |Jm〉|J̃ m̃〉:

|Ln; JJ̃〉〉 =
∑

mm̃

CLn
Jm J̃m̃

|Jm〉|J̃ m̃〉, (3.1)

where CLn
Jm J̃m̃

is the Clebsch-Gordan coefficient of SU(2) and the triangular inequality,

|J − J̃ | ≤ L ≤ J + J̃ , (3.2)

must be satisfied.

A definite form of the representative element of G/H is given by

Υ(Ω) = e−iψL1e−iϕL3e−iθK1 , (3.3)

where Ki = Ji − J̃i and Ω = (θ, ϕ, ψ) is the polar coordinates of S3. Note, however, that

the explicit form of Υ(Ω) is barely needed in the following arguments.

The spin L spherical harmonics on S3 is given by

YLn
Jm,J̃m̃

(Ω) = NL
JJ̃
〈〈Ln; JJ̃ |Υ−1(Ω)|Jm〉|J̃ m̃〉, (3.4)

where NL
JJ̃

is the normalization factor. It is fixed as

NL
JJ̃

=

√
(2J + 1)(2J̃ + 1)

2L+ 1
. (3.5)

such that the spherical harmonics (3.4) satisfies the orthonormal condition:

∫
dΩ

∑

n

(YLn
Jm,J̃m̃

)∗ YLn
J ′m′,J̃ ′m̃′ = δJJ ′δJ̃ J̃ ′δmm′δm̃m̃′ . (3.6)

Here the measure is normalized as
∫
dΩ 1 = 1 and can be identified with the Haar measure

of G since the integrand is invariant under the action of H. Then, one can easily verify (3.6)

by using the orthogonality of the representation matrices of G under the Haar measure and

a relation

∑

αβ

Ccγaα bβC
c′γ′
aα bβ = δcc′δγγ′ . (3.7)
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The equations (3.3) and (3.4) give the complex conjugate of YLn
Jm,J̃m̃

:

(YLn
Jm,J̃m̃

)∗ = (−1)−J+J̃−L+m−m̃+n YL−n
J −m,J̃ −m̃. (3.8)

The covariant derivative is understood as an algebraic manipulation:

∇i YLnJm,J̃m̃(Ω) = NL
JJ̃
〈〈Ln; JJ̃ |(−iKi)Υ

−1(Ω)|Jm〉|J̃ m̃〉. (3.9)

Using this relation, it is easy to obtain the eigenvalue of the laplacian for the spin L

spherical harmonics:

∇2YLn
Jm,J̃m̃

(Ω) = −(2J(J + 1) + 2J̃(J̃ + 1)− L(L+ 1)) YLn
Jm,J̃m̃

(Ω). (3.10)

We need the integral of the product of three spherical harmonics in rewriting the

interaction terms in terms of modes. By making composition of the angular momentum

repeatedly and using the orthogonality of the representation matrices of G and a formula

for the 9− j symbol (A.4), we obtain a compact formula
∫
dΩ

∑

n1n2n3

(YL1n1

J1m1,J̃1m̃1
)∗ YL2n2

J2m2,J̃2m̃2
YL3n3

J3m3 ,J̃3m̃3
CL1n1
L2n2 L3n3

=

√
(2L1 + 1)(2J2 + 1)(2J̃2 + 1)(2J3 + 1)(2J̃3 + 1)





J1 J̃1 L1

J2 J̃2 L2

J3 J̃3 L3




CJ1m1
J2m2 J3m3

C J̃1m̃1

J̃2m̃2J̃3m̃3
.

(3.11)

Note that the integrand on the left-hand side is again invariant under the action of H. The

equation (3.11) is one of new results in this paper, which can be applied to any field theory

on S3.

3.2 Scalars, vectors and spinors on S3

In this subsection, as an application of the results in the previous subsection, we consider

scalars, vectors and spinors on S3.

The scalar corresponds to L = 0. From the triangular inequality (3.2), we see that

(J, J̃) = (J, J). We introduce a notation for the scalar:

YJM ≡ YL=0,n=0
Jm,Jm̃ , (3.12)

where M stands for (m, m̃). The vector corresponds to L = 1. Then, the triangular

inequality implies that (J, J̃) takes (J + 1, J) or (J, J + 1) or (J, J). We assign ρ = 1,

ρ = −1 and ρ = 0 to these three cases, respectively. We make a change of basis from the

basis |1n; JJ̃〉〉 to the vector basis:

|1; JJ̃〉〉 =
1√
2

(−|1, 1; JJ̃ 〉〉+ |1,−1; JJ̃ 〉〉)

|2; JJ̃〉〉 =
i√
2

(|1, 1; JJ̃ 〉〉+ |1,−1; JJ̃ 〉〉)

|3; JJ̃〉〉 = |1, 0; JJ̃ 〉〉. (3.13)
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Accordingly, the vector harmonics on S3 are defined by

Yi
Jm,J̃m̃

= N1
JJ̃
〈〈i; JJ̃ |Υ−1(Ω)|Jm〉|J̃ m̃〉 (i = 1, 2, 3), (3.14)

which are just a unitary transform of Y1n
Jm,Jm̃. We introduce a notation for the vector:

Y ρ=1
JMi = iY iJ+1m,Jm̃,

Y ρ=−1
JMi = −iY iJm,J+1 m̃,

Y ρ=0
JMi = YiJm,Jm̃. (3.15)

Here the factors ±i on the right-hand side are just a convention. Note that Y 0
J=0M=(0,0)i =

0. The spinor corresponds to L = 1
2 . The triangular inequality implies that (J, J̃) takes

(J + 1
2 , J) or (J, J + 1

2). We assign κ = 1 to the former and κ = −1 to the latter. We

introduce a notation for the spinor:

Y κ=1
JMα = YL= 1

2
,α

J+ 1
2
m,Jm̃

,

Y κ=−1
JMα = YL= 1

2
,α

Jm,J+ 1
2
m̃
, (3.16)

where α takes 1
2 and −1

2 .

The orthnormality condition (3.6) is translated to the scalar, the vector and the spinor

as ∫
dΩ (YJ1M1)∗YJ2M2 = δJ1J2δM1M2 ,

∫
dΩ (Y ρ1

J1M1i
)∗Y ρ2

J2M2i
= δρ1ρ2δJ1J2δM1M2 ,

∫
dΩ (Y κ1

J1M1α
)∗Y κ2

J2M2α
= δκ1κ2δJ1J2δM1M2 , (3.17)

while their complex conjugates are read off from (3.8) as

(YJM)∗ = (−1)m−m̃YJ−M ,

(Y ρ
JMi)

∗ = (−1)m−m̃+1Y ρ
J−Mi,

(Y κ
JMα)∗ = (−1)m−m̃+κα+1Y κ

J−M−α. (3.18)

By using (3.9), it is easy to show that the following identities hold:

∇i Y ±1
JMi = 0,

εijk ∇j Y ρ
JMk = −2ρ(J + 1) Y ρ

JMi,

∇i YJM = −2i
√
J(J + 1) Y 0

JMi. (3.19)

The eigenvalues of the laplacian can be read off from (3.10):

∇2 YJM = −4J(J + 1) YJM ,

∇2 Y ±1
JMi = −(4J(J + 2) + 2) Y ±1

JMi,

∇2 Y 0
JMi = −(4J(J + 1)− 2) Y 0

JMi,

∇2 Y κ
JMα = −(2J(2J + 3) +

3

4
) Y κ

JMα. (3.20)
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Using (3.9) yields an identity

σiαβ ∇i Y κ
JMβ = −iκ(2J +

3

2
) Y κ

JMα. (3.21)

In what follows, we define various integrals of the product of three scalar or spinor or

vector harmonics, which we will call vertex coefficients. The vertex coefficients are needed

to make a mode expansion for the interaction part. Their expression are obtained by using

the formula (3.11). We give these expressions in appendix B. The expressions for the vertex

coefficients consisting only of scalars and vectors are already given in [19, 20], where the

9-j symbols are, however, not used.

CJ1M1
J2M2 J3M3

≡
∫
dΩ (YJ1M1)∗YJ2M2YJ3M3 .

CJ1M1 J2M2 J3M3 ≡
∫
dΩ YJ1M1YJ2M2YJ3M3 .

DJMJ1M1ρ1 J2M2ρ2
≡
∫
dΩ (YJM )∗Y ρ1

J1M1i
Y ρ2

J2M2i
.

DJM J1M1ρ1 J2M2ρ2 ≡
∫
dΩ YJMY

ρ1

J1M1i
Y ρ2

J2M2i
.

EJ1M1ρ1 J2M2ρ2 J3M3ρ3 ≡
∫
dΩ εijk Y

ρ1

J1M1i
Y ρ2

J2M2j
Y ρ3

J3M3k
.

FJ1M1κ1
J2M2κ2 JM

≡
∫
dΩ (Y κ1

J1M1α
)∗Y κ2

J2M2α
YJM .

GJ1M1κ1
J2M2κ2 JMρ ≡

∫
dΩ (Y κ1

J1M1α
)∗σiαβY

κ2
J2M2β

Y ρ
JMi. (3.22)

3.3 Conformal Killing vectors and spinors

The vector spherical harmonics that correspond to the conformal Killing vectors were

already found in [20]. The number of the independent conformal Killing vectors is 15,

which is equal to the number of the generators of SO(2, 4). The conformal group SO(2, 4)

contains R×SO(4) as a subgroup, where R corresponds to the time translation and SO(4)

corresponds to the isometry of S3. The conformal Killing vectors corresponding to the

generators of this subgroup is also the Killing vectors, namely these vectors satisfy the

Killing vector equation ∇aξb +∇bξa = 0. The number of the generators of the subgroup is

1 + 6 = 7 so that the number of the independent Killing vectors is 1 + 6 = 7. It is easy to

check using (3.9) that the 4-vectors (1, ~0), (0, Y +
0Mi) and (0, Y −0Mi) satisfy the Killing vector

equation. The first one corresponds to the time translation, while the second and third

ones correspond to the isometry of S3 and include 6 independent real vectors due to the

condition (3.18). It is also easily verified that the remaining 8 conformal Killing vectors

are given by (eitY 1
2
M ,
√

3eitY 0
1
2
Mi

).

Next, let us find the spinor spherical harmonics that correspond to the conformal

Killing spinors [7]. If we set σ0 = 12, it is easy to verify that the following equation holds:

∑

β

(∇a)αβ(e∓
i
2
tY ±0Mβ) = ∓ i

2

∑

β

(σa)αβe
∓ i

2
tY ±0Mβ. (3.23)

– 11 –



J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

In the next section, we will see that the conformal Killing spinors are indeed expanded by

e∓
i
2
tY ±0Mα, which include 2 independent complex spinors for each sign.

4. Harmonic expansion of N = 4 SYM on R× S3

In this section, we apply the results in 3 to N = 4 SYM on R × S3. In section 4.1, we

make a harmonic expansion of N = 4 SYM on R× S3 and rewrite the theory in terms of

infinitely many KK modes. In other words, we obtain a matrix quantum mechanics with

infinitely many matrices. In section 4.2, we quantize the free part of the theory and obtain

the KK tower.

4.1 Harmonic expansion of N = 4 SYM on R× S3

First, we fix the forms of 4-dimensional gamma matrices:

γa =

(
0 iσa

iσ̄a 0

)
, (4.1)

where σ0 = −12 and σi (i = 1, 2, 3) are the Pauli matrices. σ̄0 = σ0 and σ̄i = −σi. In

this convention,

γ5 =

(
12 0

0 −12

)
, C4 =

(
−σ2 0

0 σ2

)
. (4.2)

We introduce a two-component spinor:

λA+ =

(
ψA

0

)
. (4.3)

Using the two-component spinor, we can rewrite the action (2.18) as follows:

S =
1

g2

∫
dtdΩ Tr

(
−1

4
FabF

ab − 1

2
DaXABD

aXAB − 1

2
XABX

AB + iψ†AD0ψ
A + iψ†Aσ

iDiψ
A

+ψ†Aσ
2[XAB , (ψ†B)T ]− ψATσ2[XAB , ψ

B ] +
1

4
[XAB , XCD][XAB, XCD]

)
,

(4.4)

where g2 ≡ g2
YM
2π2 since the area of unit S3 is 2π2. A0 and XAB are scalars on S3, Ai is a

vector on S3 and ψA is a spinor on S3. ∇0 = ∂t and ∇i is the covariant derivative on S3.

To quantize the system, we need a gauge-fixing. We take the Coulomb gauge,

∇iAi = 0, (4.5)

for convenience. The residual gauge symmetry which is realized by a gauge parameter that

depends only on time is fixed by1

∫
dΩA0 = 0. (4.6)

1In the theory on S1 × S3, the zero mode of the lefthand side of (4.6), which is given by its integral on

S1, becomes dynamical and plays an important role [14, 21].
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The gauge-fixing and Faddeev-Popov terms for the above gauge-fixing are given by

SGF+FP =

∫
dtdΩ Tr(−ic̄∇iDic). (4.7)

It should be understood that the condition (4.5) is always imposed by the delta function

in the path-integral. The free part of the gauge-fixed action, I = S + SGF+FP , is

I0 =

∫
dtdΩ Tr

(
−1

2
A0∇2A0 +

1

2
∂0Ai∂0Ai +

1

2
Ai∇2Ai −AiAi

+
1

2
∂0XAB∂0X

AB +
1

2
XAB∇2XAB − 1

2
XABX

AB

+iψ†A∂0ψ
A + iψ†Aσ

i∇iψA − ic̄∇2c
)
, (4.8)

while the interaction part of the gauge-fixed action is

Iint =

∫
dtdΩ Tr

(
−ig∂0Ai[A0, Ai] + ig∇iA0[A0, Ai] +

ig

2
(∇iAj −∇jAi)[Ai, Aj ]

−g
2

2
[A0, Ai]

2 +
g2

4
[Ai, Aj ]

2 − ig∂0XAB [A0, X
AB ] + ig∇iXAB [Ai, X

AB]

−g
2

2
[A0, XAB ][A0, X

AB] +
g2

2
[Ai, XAB ][Ai, X

AB] + gψ†A[A0, ψ
A]

+gψ†Aσ
i[Ai, ψ

A] + gψ†Aσ
2[XAB, (ψ†B)T ]− gψATσ2[XAB , ψ

B ]

+
g2

4
[XAB, XCD][XAB , XCD] + g∇ic̄[Ai, c]

)
. (4.9)

In (4.8) and (4.9), we have rescaled the fields by 1/g.

We make the mode expansion for the fields as

A0(t,Ω) =
∑

(JM)6=(00)

BJM (t)YJM (Ω), Ai(t,Ω) =
∑

ρ=±1

∑

JM

AJMρ(t)Y
ρ
JMi(Ω),

XAB(t,Ω) =
∑

JM

XJM
AB (t)YJM (Ω), XAB(t,Ω) =

∑

JM

XAB
JM (t)YJM (Ω),

ψAα (t,Ω) =
∑

κ=±1

∑

JM

ψAJMκ(t)Y κ
JMα(Ω),

c(t,Ω) =
∑

(JM)6=(00)

cJM (t)YJM (Ω), c̄(t,Ω) =
∑

(JM)6=(00)

c̄JM (t)YJM (Ω) (4.10)

The condition (JM) 6= (00) for the summation in A0, c and c̄ comes from the gauge-fixing

condition (4.6). Each mode is N × N matrix. Due to (3.18), A†0 = A0, A†i = Ai and

X†AB = XAB imply

(BJM )† = (−1)m−m̃BJ −M , (AJMρ)
† = (−1)m−m̃+1AJ −Mρ,

(XJM
AB )† = (−1)m−m̃XAB

J −M . (4.11)

Note that ρ takes only ±1 in (4.10) because of the gauge-fixing condition (4.5) and the

first identity in (3.19).
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In order to express (4.8) and (4.9) in terms of the modes in (4.10), we use (3.17)∼(3.22).

For the four-point interaction terms, we also use product expansions such as

YJ1M1(Ω)YJ2M2(Ω) =
∑

J1M1J2M2

CJ3M3
J1M1 J2M2

YJ3M3(Ω). (4.12)

The result is

I = I0 + Iint, I0 =

∫
dt L0, Iint =

∫
dt (L

(1)
int + L

(2)
int), (4.13)

L0 = Tr


 ∑

(JM)6=(00)

(−1)m−m̃2J(J + 1)BJ−MBJM

+
∑

ρ=±1

∑

JM

(−1)m−m̃+1 1

2
(ȦJ −MρȦJMρ − ωAJ

2
AJ −MρAJMρ)

+
∑

JM

(−1)m−m̃
1

2
(ẊJ −M

AB ẊAB
JM − ωXJ

2
XJ −M
AB XAB

JM )

+
∑

κ=±1

∑

JM

(iψ†JMκAψ̇
A
JMκ + κωψJψ

†
JMκAψ

A
JMκ)

+
∑

(JM)6=(00)

(−1)m−m̃4iJ(J + 1)c̄J −McJM


 , (4.14)

L
(1)
int = Tr [−igρ1(J1 + 1)EJ1M1ρ1 J2M2ρ2 J3M3ρ3AJ1M1ρ1 [AJ2M2ρ2 , AJ3M3ρ3 ]

+
g2

4
DJMJ1M1ρ1 J3M3ρ3

DJM J2M2ρ2 J4M4ρ4 [AJ1M1ρ1 , AJ2M2ρ2 ][AJ3M3ρ3 , AJ4M4ρ4 ])

+2g
√
J1(J1 + 1)DJ2M2 J1M10 JMρX

J1M1
AB [AJMρ, X

AB
J2M2

]

+
g2

2
CJMJ2M2 J4M4

DJM J1M1ρ1 J3M3ρ3 [AJ1M1ρ1 , X
J2M2
AB ][AJ3M3ρ3 , X

AB
J4M4

])

+gGJ1M1κ1
J2M2κ2 JMρψ

†
J1M1κ1A

[AJMρ, ψ
A
J2M2κ2

]

−ig(−1)m2−m̃2+
κ2
2 FJ1M1κ1

J2−M2κ2 JM
ψ†J1M1κ1A

[XAB
JM , ψ

†
J2M2κ2B

]

+ig(−1)−m1+m̃1+
κ1
2 FJ1−M1κ1

J2M2κ2 JM
ψAJ1M1κ1

[XJM
AB , ψ

B
J2M2κ2

])

+
g2

4
CJMJ1M1 J2M2

CJM J3M3 J4M4 [XJ1M1
AB , XJ2M2

CD ][XAB
J3M3

, XCD
J4M4

])

]
, (4.15)

L
(2)
int = Tr

[
−igDJM J1M1ρ1 J2M2ρ2ȦJ1M1ρ1 [BJM , AJ2M2ρ2 ]

+2g
√
J1(J1 + 1)DJ2M2 J1M10 JMρBJ1M1 [BJ2M2 , AJMρ]

−g
2

2
CJMJ1M1 J3M3

DJM J2M2ρ2 J4M4ρ4 [BJ1M1 , AJ2M2ρ2 ][BJ3M3 , AJ4M4ρ4 ]

−igCJM J1M1 J2M2Ẋ
J1M1
AB [BJM , X

AB
J2M2

])

−g
2

2
CJMJ1M1 J2M2

CJM J2M3 J4M4 [BJ1M1 , X
J2M2
AB ][BJ3M3 , X

AB
J4M4

])

+gFJ1M1κ1
J2M2κ2 JM

ψ†J1M1κ1A
[BJM , ψ

A
J2M2κ2

])

−2ig
√
J1(J1 + 1)DJ2M2 J1M10 JMρc̄J1M1 [AJMρ, cJ2M2 ]

]
, (4.16)
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where

ωAJ = 2J + 2,

ωXJ = 2J + 1,

ωψJ = 2J +
3

2
. (4.17)

We have classified the interaction terms into two categories. L
(1)
int consists of the terms that

do not contain B or c or c̄ while L
(2)
int consists of the terms that contain B or c or c̄. In each

term in L
(1)
int and L

(2)
int, the summation over indices that appear twice or more than twice is

assumed. Of course, ‘J ’ in B, c and c̄ cannot take zero. Note that the way to express the

four-point interaction using the vertex coefficients is not unique. The expressions for L
(1)
int

and L
(2)
int, (4.15) and (4.16), are one of new results in this paper.

4.2 Quantization of free part and the Kaluza-Klein tower

The free theory in which g = 0 is easy to quantize. In the free theory, one can set BJM = 0

and cJM = c̄JM = 0. AJMρ, X
AB
JM and ψAJMκ behave as free particles. We can construct

the hamiltonian of the free theory from L0 as

H0 = Tr


∑

JMρ

(−1)m−m̃+1 1

2
(PJ −MρPJMρ + ωAJ

2
AJ −MρAJMρ)

+
∑

JM

(−1)m−m̃
1

2
(P J −MAB PABJM + ωXJ

2
XJ −M
AB XAB

JM )−
∑

JMκ

κωψJψ
†
JMκAψ

A
JMκ

]
,

(4.18)

where PJMρ and P JMAB are the canonical conjugate momenta of AJMρ and XAB
JM , respec-

tively, while the canonical conjugate of ψAJMκ is iψ†JMκA. The (anti-)commutation relations

are

[(AJMρ)kl, (PJ ′M ′ρ′)k′l′ ] = iδJ1J2δM1M2δρ1ρ2δkl′δlk′ ,

[(XAB
JM )kl, (P

J ′M ′
A′B′ )k′l′ ] = i

1

2
(δAA′δ

B
B′ − δAB′δBA′)δJJ ′δMM ′δkl′δlk′ ,

{(ψAJMκ)kl, (ψ
†
J ′M ′κ′A′)k′l′} = δAA′δJJ ′δMM ′δκκ′δkl′δlk′ . (4.19)

AJMρ, X
AB
JM and ψAJMκ and their canonical conjugates are expanded in terms of the creation

and annihilation operators as

AJMρ =
1√
2ωAJ

(aJMρe
−iωAJ t + (−1)m−m̃+1a†J−Mρe

iωAJ t),

PJMρ = −i

√
ωAJ
2

((−1)m−m̃+1aJ−Mρe
−iωAJ t − a†JMρe

iωAJ t),

XAB
JM =

1√
2ωXJ

(αABJMe
−iωXJ t + (−1)m−m̃αAB†J−Me

iωXJ t),
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PABJM = −i

√
ωXJ
2

((−1)m−m̃αABJ−Me
−iωXJ t − αAB†JM eiω

X
J t),

ψAJM+ = dA†J−Me
iωψJ , ψAJM− = bAJMe

−iωψJ . (4.20)

The (anti-)commutation relations for the creation and annihilation operators are

[(aJMρ)kl, (a
†
J ′M ′ρ′)k′l′ ] = δJJ ′δMM ′δρρ′δkl′δlk′ ,

[(αABJM )kl, (α
A′B′†
J ′M ′ )k′l′ ] =

1

2
εABA

′B′δJJ ′δMM ′δkl′δlk′ ,

{(bAJM )kl, (b
†
J ′M ′A′)k′l′} = δAA′δJJ ′δMM ′δkl′δlk′ ,

{(dJMA)kl, (d
A′†
J ′M ′)k′l′} = δA

′
A δJJ ′δMM ′δkl′δlk′ . (4.21)

The free hamiltonian is rewritten in terms of the creation and annihilation operators:

H0 =: Tr


∑

JMρ

ωAJ a
†
JMρaJMρ +

∑

JM

ωXJ α
AB†
JM αJMAB +

∑

JM

ωψJ (b†JMAb
A
JM + dA†JMdJMA)


 : .(4.22)

In section 6.2, we will make a comment on the constant which we discarded when we

obtained the above normal-ordered expression.

As in [22, 7], the mass spectrum of the free theory in which g = 0 can be read off

from (4.18). These forms the infinitely high KK tower. As stated in introduction, there

exists a mass gap and the mass spectrum is discrete. The mass spectrum is summarized in

Fig. 1. Note that there is no mass multiplicity between the bosons and the fermions unlike

the supersymmetric theories in flat space.

In the case of the free theory, given an operator on R4, one can easily construct the

corresponding state on R × S3 in terms of the creation operators. For instance, the state

that corresponds to

Tr(XA1B1XA2B2 · · ·XAlBl) (4.23)

on R4 is

2
l
2

N
l
2

Tr(αA1B1†
00 αA2B2†

00 · · ·αAlBl†00 )|0〉, (4.24)

where |0〉 is the Fock vacuum and the vacuum of the free theory. Note that this state

is normalized in the large N limit. In general, the operators that contain derivatives

correspond to the states constructed by the higher modes of the creation operators. It

was shown [23] that the l-loop dilatation operator for a set of the operators (4.23) with

fixed l is regarded as the hamiltonian of the integrable SO(6) spin chain. In this sence,

the operators (4.23) are regarded as the integrable SO(6) spin chain. In section 6, we will

obtain this dilatation operator by calculating the energy corrections of the states (4.24).

For later convenience, we rewrite the superconformal transformation (2.24) for the free

theory in terms of the modes. We introduce the two-component spinor ηA for the conformal
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Killing spinor:

εA+ =

(
ηA

0

)
,

∇aεA+ = ± i
2
γaγ

0εA+ ↔ ∇aηA = ± i
2
σaη

A. (4.25)

Using the two-components spinors, we rewrite (2.24) with g = 0 as

δηAi = i(−ψ†AσiηA + η†Aσiψ
A),

δηX
AB = i(−ηATσ2ψB + ηBTσ2ψA − εABCDψ†Cσ2(η†D)T ),

δηψ
A = −F0iσiη

A +
i

2
Fijεijkσkη

A − 2∂0X
ABσ2(η†B)T + 2∇iXABσiσ

2(η†B)T

−2iXABσ2(η†B)T .

(4.26)

As anticipated in section 3, (3.23) and (4.25) show that ηA is expanded in terms of

e∓
i
2
tY ±0Mα:

ηAα =
∑

m=± 1
2

ηAm+e
− i

2
tY +

0Mα +
∑

m=± 1
2

ηAm−e
i
2
tY −0Mα. (4.27)

The superconformal transformation for the KK modes are read off by substituting (4.10)

and (4.27) into (4.26). In Fig. 1, the solid and dotted arrows represent the superconfor-

mal transformation for the creation operator caused by ηm+ and η∗m−, respectively. In

particular, the transformation of the lowest creation operators caused by ηm+ is

δη+α
AB†
00 = i

√
2
∑

m=± 1
2

(−1)m(ηAm+d
B†
0M − ηBm+d

A†
0M ),

δη+d
A†
0M = 2

√
2

∑

m1=± 1
2
,m2=0,±1

(−1)m+ 1
2C1m2

1
2
m1

1
2
m
ηAm1+a

†
0M2+,

δη+a
†
0Mρ = 0. (4.28)

We will use these equations in section 6.

5. Consistent truncations

In this section we describe the consistent truncations of N = 4 SYM on R × S3 to the

theories with 16 supercharges, in terms of the mode expansion performed in the previous

section. This description helps us to extract various results for the theories with 16 su-

percharges from ones for N = 4 SYM on R × S3, such as the 1-loop hamiltonian for the

SO(6) sector (section 6) and the 1-loop effective action around a BPS solution (section

7). In section 5.1, we make the consistent truncations of N = 4 SYM on R × S3 to the

theories with 16 supercharges in terms of the KK modes. In section 5.2, we compare the

mass spectrum of N = 4 SYM on R× S2 with that of the theory obtained by quotienting

the original theory by U(1). We clarify how quotienting by U(1) yields N = 4 SYM on

R × S2. In section 5.3, we examine the vacua of N = 4 SYM on R × S2 in terms of the

KK modes.
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Figure 1: The KK tower of N = 4 super Yang-Mills on R×S3. The first number, the second num-

ber and the third number in the parentheses represent J , J̃ and the dimension of the representation

of SU(4), respectively. The solid and dotted arrows represent the superconformal transformation

in the free theory for the creation operator caused by ηm+ and η∗m−, respectively.

5.1 Consistent truncations to theories with 16 supercharges

The original SYM on R× S3 has the superconformal SU(2, 2|4), whose bosonic subgroup

is SO(2, 4) × SO(6). SO(2, 4) has a subgroup SO(4) that is the isometry of the S 3 on

which the theory defined. In section 2, we decomposed the SO(4) as SU(2) × S̃U(2) and

developed the harmonic expansion. We consider a subgroup of S̃U(2). We project out

all fields of N = 4 SYM on R × S3 which are not invariant under the subgroup of S̃U(2)

and consider the same interactions for the remaining fields as the ones in N = 4 SYM on

R×S3. Taking full S̃U(2), U(1), and Zk as the subgroup of S̃U(2) leads to the plane wave

matrix model, N = 4 SYM on R× S2 and N = 4 SYM on S3/Zk, respectively [1].

Let us describe the above truncations in terms of the KK modes. The plane wave
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n v m̃ multiplicity

even even 0, ± 2k
2 ,· · ·, ±nk

2 n+ 1

even odd ±k
2 , ±3k

2 , · · ·, ±k
2 (n− 1) n

odd even ±k
2 , ±3k

2 , · · ·, ±k
2n n+ 1

odd odd 0, ± 2
2k, · · ·, ±k

2 (n− 1) n

Table 1: The remaining modes for N = 4 SYM on R× S3/Zk for odd k.

matrix model is obtained by keeping only the modes that are singlet with respect to S̃U(2),

namely (0, 0, 6) as (XAB
00 ), (1

2 , 0, 4) as (ψA0M+) and (1, 0, 1) as (A0M+) in the KK tower [7].

The N = 4 SYM on R×S3/Zk is obtained by keeping only the modes with m̃ = k
2q, where

q ∈ Z≥0.2 For later convenience, we examine the multiplicity of the remaining modes for

fixed J̃ . When k is even, the remaining modes after the truncation have the following

quantum numbers of S̃U(2):

J̃ =
n

2
+
v

2
, (5.1)

where n ∈ Z≥0 and v = 0, 2, · · · , k − 2, and

m̃ = 0,±k
2
, · · · ,±k

2
n (5.2)

for each v. Then the multiplicity of the remaining modes for fixed n and v is 2n+ 1. Note

that all the modes with J̃ a half odd integer should be projected out, because such modes

cannot have m̃ = k
2Z≥0.

In the odd k case the discussion is similar to the above one. The quantum number J̃

for the remaining modes in this case takes the following values:

J̃ =
n

2
+
v

2
, (5.3)

where n ∈ Z≥0 and v = 0, 1, · · ·, k−1. Note that the range of v for odd k is different from

that for even k. The values of m̃ and the multiplicity for fixed n and v are summarized in

table 1.

The N = 4 SYM on R × S2 is obtained by keeping only the modes with m̃ = 0. We

will discuss this truncation in the next subsection in detail.

We close this subsection by showing the consistency of the above truncations in terms

of the KK modes. Let us first consider the cases ofN = 4 SYM on R×S3/Zk and on R×S2.

The conservation of m̃ implies that each term in the action of the original theory includes

no KK mode or more than one KK mode that are projected out in the truncations. This

fact ensures that the equation of motion in the original theory for a KK mode projected

2The set “Z≥0” consists of zero and positive integers.
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out in the truncations becomes trivial after the truncations. Hence, every classical solution

of the truncated theories can be lifted up to a classical solution of the original theory.

In a similar way, one can show that the 16 supercharges for the supersymmetry trans-

formations caused by ηm+ and η∗m+ are preserved in the truncations. These parameters

have m̃ = 0. The conservation of m̃ again implies that after the truncations the trans-

formations of the KK modes that are projected out in the truncations become trivial and

those of the remaining modes are still nontrivial. This means that the truncated theories

have the 16 supercharges corresponding to ηm+ and η∗m+.

In the case of the plane wave matrix model one must also use the conservation of J̃

to show the consistency of the truncation. Indeed the consistency of the truncation was

checked explicitly in [7].

5.2 Comparison with N = 4 SYM on R× S2

In this subsection, we compare the remaining KK modes in the U(1) truncation with the

KK modes of N = 4 SYM on R× S2. Due to the mixing terms in N = 4 SYM on R× S2

this comparison is not trivial.

We begin by recalling the action of N = 4 SYM on R× S2 [6]3

S2 =
1

g′2

∫
dt
dΩ′

µ2
Tr

{
− 1

4
Fa′b′F

a′b′ − 1

2
(Da′Xm)2 − µ2

8
X2
m −

1

2
(Da′Φ)2 − µ2

2
Φ2

− i
2
λ̄Γa

′
Da′λ+

iµ

8
λ̄Γ12Φλ− 1

2
λ̄Γm [Xm, λ] +

1

2
λ̄ΓΦ [Φ, λ]

+
1

4
[Xm, Xn]2 +

1

2
[Φ, Xm]2 − µΦF12

}
, (5.4)

where a′ = 0, 1, 2, and m = 1, · · · , 6 and (Γa
′
,ΓΦ,Γm) are ten dimensional gamma matrices.

The radius of S2 is µ−1 and the effective Yang-Mills coupling g ′2 is defined by g′2 =

g2
YM2/4π, since the area of S2 is 4π times square of the radius. We set µ = 2 since this

value is obtained by the U(1) truncating of N = 4 SYM on unit S3. The volume integration

over S2 is normalized as
∫

S2

dΩ′ =
∫

S2

dΩ2

4πµ−2
= 1. (5.5)

Note that the last term in (5.4) mixes Φ with Aa′ .

For later convenience we write down the mode expansion for the fields on S2 here.

The details for the harmonics on S2 are left to appendix C. The mode expansions for the

scalars, the vectors and the spinors on S2 are given by 4

XAB(t,Ω′) =
∑

J∈Z≥0

J∑

m=−J
XJm
AB (t)YJm(Ω′),

3The coefficient of the fermion mass term in (5.4) is different from the one in [6]. This originates from

the difference of the coordinate systems.
4The set Z>0 consist of only “positive” integers, although the set Z≥0 consists of zero and positive

integers.
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Φ(t,Ω′) =
∑

J∈Z≥0

J∑

m=−J
ΦJm(t)YJm(Ω′), (5.6)

Ai(t,Ω
′) =

∑

J∈Z>0

J∑

m=−J

[
AtJm(t)Y t

Jmi(Ω
′) +AlJm(t)Y l

Jmi(Ω
′)
]

(for i = 1, 2), (5.7)

ψAα (t,Ω′) =
∑

J∈ 1
2

+Z≥0

J∑

m=−J
ψAαJm(t)YJmα(Ω′) (for α = ±1

2
), (5.8)

where the spinor ψAα is a two component one on S2. Here AtJm and AlJm are the transverse

and the longitudinal modes for the gauge fields. In the Coulomb gauge, the longitudinal

modes (AlJm) in (5.7) vanish because ∇iAi = 0 and ∇iY t
Jmi = 0. Note that the range of

J is different form one for S3, that is, J takes zero and positive integers for the scalar,

positive integers for the vector and positive half odd integers for the spinor. The hermicity

of the fields implies together with (C.2) the following relations:

(
XJm
AB

)†
= (−1)mXAB

J−m, (ΦJm)† = (−1)mΦJ−m, (5.9)

(
AtJm

)†
= (−)−mAtJ−m,

(
AlJm

)†
= (−1)−mAlJ−m. (5.10)

Let us first consider the spectrum of the SO(6) scalar modes. In this case the compar-

ison of the spectrum is straightforward. The mass term for the SO(6) scalars in the SU(4)

notation is read off from (5.4) as 5

SX =

∫
dtdΩ′Tr

{
1

2
Xm∇2Xm −

µ2

8
X2
m

}

=

∫
dt

∑

J∈Z≥0

J∑

m=−J

{
−1

2

[
µ(J +

1

2
)

]2

Tr
{

(XAB
Jm )†XAB

Jm

}}
, (5.11)

where in the second line we made the mode expansion by using (5.6) and used the formu-

lae (C.2) and (C.3). It is clear that this equation is the same as the third line in (4.14)with

the modes with integer J and m̃ = 0 kept. Note that all the scalar modes with half odd

integer J in (4.14) should be projected out in this truncation because these modes cannot

have m̃ = 0. The mass for the scalars on S2 are immediately read off as µ(J + 1
2). The

multiplicity for fixed J is given by

J∑

m=−J
1 = 2J + 1.

The result is summarized in table 2.

We next consider the gauge field Ai and the scalar Φ together. As mentioned before

this comparison is not straightforward due to the mixing between Ai and Φ. We obtain

5For a moment, we omit the common factor 1/(µg′)2 for convenience since it is irrelevant here.
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mass multiplicity XAB
JM

µ(J + 1
2) 2J + 1 (J, J, 6)

Table 2: The SO(6) scalar mass spectrum of N = 4 SYM on R× S2: The range of J is J ∈ Z≥0.

Note that µ = 2. The column of XAB
JM shows the corresponding N = 4 scalar modes on S3 with

the same mass.

their mass terms using the mode expansions (5.6) and (5.7) as follows:

SAΦ =

∫
dtdΩ′Tr

[
1

2
Ai∇2Ai −

µ2

2
AiAi +

1

2
Φ∇2Φ− µ2

2
Φ2 − µΦF12

]
(5.12)

=

∫
dtTr

{
µ2

2

∑

J∈Z≥0

J∑

m=−J

[
At†JM ,Φ

†
Jm

] [ −J(J + 1)
√
J(J + 1)√

J(J + 1) −J(J + 1)− 1

]

[
AtJm
ΦJm

]}
.

Here we took the Coulomb gauge, so that there is no longitudinal mode Al
Jm in this

expression. A unitary matrix that diagonalizes the above mass matrix is given by

U =
1√

2J + 1

[√
J + 1 −

√
J√

J
√
J + 1

]
. (5.13)

By redefining the modes for AJm and ΦJm as

iA(J−1)m+ ≡
√

1 + J

1 + 2J
AtJm

√
J

1 + 2J
ΦJm, (for J ≥ 1) (5.14)

iAJm− ≡ −
√

J

1 + 2J
AtJm +

√
1 + J

1 + 2J
ΦJm, (for J ≥ 0) (5.15)

we find

SAΦ =

∫
dtTr

{
−1

2

∑

J∈Z≥0

J+1∑

m=−J−1

µ2(J + 1)2A†Jm+AJm+

− 1

2

∑

J∈Z≥0

J∑

m=−J
µ2(J + 1)2A†Jm−AJm−

}
.

(5.16)

It is clear that this expression is the same as the second line in (4.14) with the modes with

m̃ = 0 kept. Note that all the vector modes with half odd integer J in (4.14) should be

projected out in this truncation because these modes cannot have m̃ = 0. The result are

summarized in table 3.
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mass multiplicity AJM±

µ(J + 1) 2J + 1 (J, J + 1, 1)

µ(J + 1) 2J + 3 (J + 1, J, 1)

Table 3: The gauge boson and Φ mass spectrum of N = 4 SYM on R × S2: The range of J is

J ∈ Z≥0. Note that µ = 2. The column of AJM± shows the corresponding gauge field modes on

S3 with the same mass.

Finally, in a similar way, we examine the mass spectrum of the fermions. The fermion

mass term in (5.4) is

Sλ =

∫
dtdΩ′Tr

[
− i

2
λ̄Γa

′∇iλ+
iµ

8
λ̄Γ12Φλ

]
=

∫
dtdΩ′Tr

[
iψ†Aσ

i∇iψA +
µ

4
ψ†Aψ

A
]

= Tr

∫
dt

∑

J∈ 1
2

+Z≥0

J∑

m=−J
µ
[
ψ

1/2†
JmA ψ

−1/2†
JmA

] [ +1
4 J + 1

2

J + 1
2 +1

4

]
 ψ

1
2
A

Jm

ψ
− 1

2
A

Jm


 , (5.17)

In the first line we decomposed the sixteen component spinor λ into the two component one

ψα using (2.16) and (4.3). In the second line we made the mode expansion by using (5.8).

Then a unitary matrix that diagonalize the fermion mass matrix in (5.17) is given by

V =
1√
2

[
1 1

−1 1

]
. (5.18)

After redefining the modes as

ψA
(J− 1

2
)(m,0)+

≡ 1√
2

[
ψ

1
2
A

Jm + ψ
− 1

2
A

Jm

]
, ψAJ(m,0)− ≡

1√
2

[
−ψ

1
2
A

Jm + ψ
− 1

2
A

Jm

]
, (5.19)

one finds

Sλ =

∫
dtTr




∑

J∈Z≥0

J+ 1
2∑

m=−J− 1
2

µ

[
J +

3

4

]
ψ†J(m,0)+Aψ

A
J(m,0)+

−
∑

J∈ 1
2

+Z≥0

J∑

m=−J
µ

[
J +

3

4

]
ψ†J(m,0)−Aψ

A
J(m,0)−




. (5.20)

It is clear that this expression is the same as the forth line in (4.14) with the modes m̃ = 0

kept. The multiplicity for the modes with J is 2J + 1. Notice that all the fermion mode

(J + 1
2 , J, 4) with half odd integer J in (4.14) should be projected out because these modes

cannot have m̃ = 0. For the same reason all the fermion mode (J, J + 1
2 , 4) with integer J

in (4.14) should be projected out. The result for the fermion is summarized in table 4.
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J mass multiplicity ψJM±
J ∈ Z≥0 µ(J + 3

4 ) 2J + 2 (J + 1
2 , J, 4)

J ∈ 1
2 +Z≥0 µ(J + 3

4 ) 2J + 1 (J, J + 1
2 , 4̄)

Table 4: The fermion mass spectrum of N = 4 SYM on R × S2:The column of ψJM± shows the

corresponding fermion modes of N = 4 SYM on R× S3 with the same mass. Note that µ = 2.

5.3 Non-trivial vacua of N = 4 SYM on R× S2

It is discussed in [1] that N = 4 super Yang-Mills on R × S2 has many non-trivial vacua.

Then it is valuable to describe these non-trivial vacua in terms of the modes to investigate

the dynamics of this theory there, although we will study this theory in the trivial vacuum

in this paper.

Let us start with writing down the potential terms in (5.4) that we focus on:

Spot =
1

g′2µ2

∫
dtdΩ′Tr

{
−1

2

(
F12 + µΦ

)2
− 1

2

(
∇iΦ− i [Ai,Φ]

)2
}
. (5.21)

Because the potential consist of the sum of the two complete square terms, one immediately

reads off the conditions for the zero-energy vacua:

F12 + µΦ = 0, (5.22)

∇iΦ− i [Ai,Φ] = 0 (i = 1, 2). (5.23)

These equations are rewritten in terms of the KK modes (5.6) and (5.7) as

−µ
√
J(J + 1)AtJm + µΦJm +

n0
J1
n0
J2

4n0
J

{1− (−1)J1+J2−J}CJ0
J11 J2−1C

Jm
J1m1J2m2

[
AtJ1m1

, AtJ2m2

]
= 0,

(5.24)

µJ(J + 1)ΦJm −
n0
J1
n0
J2

2n0
J

√
J2(J2 + 1){1− (−1)J1+J2−J}CJ0

J11 J2−1C
Jm
J1m1J2m2

[
AtJ1m1

,ΦJ2m2

]
= 0,

(5.25)

n0
J1
n0
J2
{1 + (−1)J1+J2−J}CJ1

J11 J20C
Jm
J1m1J2m2

[
AtJ1m1

,ΦJ2m2

]
= 0, (5.26)

with no summation over J andm. Here we took the Coulomb gauge ∇iAi = 0, so that there

is no longitudinal mode AlJm in the above expressions. The equations (5.25) and (5.26)

correspond to the longitudinal and transverse components of (5.23), respectively.

Unfortunately, it is difficult to find general solutions for (5.24)- (5.26). Then we would

like to solve them with some assumptions. Let us first make an ansatz that the non-

vanishing modes are only A1m and Φ1m and that they are related as

Φ1m = αAt1m. (5.27)
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Then it is easily verified using the relation CJm
1m11m2

= (−1)1+1−JCJm1m21m1
that the equa-

tion (5.26) is trivially satisfied. When we set α = 1√
2
, the equations (5.24) and (5.25) are

reduced to three non-trivial ones:

[A10, A1±1] = ∓
√

2

3
µA1±1, [A11, A1−1] =

√
2

3
µA10. (5.28)

This is nothing but the SU(2) algebra. Then the non-trivial solution is

A1−1 =
µ√
3
L+, A11 = − µ√

3
L−, A10 =

√
2

3
µL3, Φ1m =

1√
2
A1m, (5.29)

where Li’s are the SU(2) generators. It is easily checked that this solution are consistent

with the hermicity conditions for the KK modes (5.9) and (5.10), of course, as it should

be. When we consider the N = 4 U(N) SYM on R × S2, our solution is expressed by

an irreducible or reducible SU(2) representation of dimension N . Then the number of

the vacua that our solution (5.29) can represent is equal to the partitions of N , that is,

P (N). This number coincides with the number of vacua of the plane wave matrix model [1].

Note that our solution corresponds to a part of the solutions discussed in [6, 1], where the

total number of the vacua of this theory and the tunneling amplitude between them are

discussed.

6. 1-loop calculations and the SO(6) spin chains

In this section, we examine the 1-loop corrections. We consider those in the original theory

in sections 6.1∼6.3, and those in the truncated theories in section 6.4. In section 6.1, we

illustrate the calculation of the 1-loop diagrams with the 1-loop self-energy of XAB . In

section 6.2, we introduce cut-offs for loop angular momenta as a regularization scheme

and calculate the divergent parts of the self-energies of all the fields and some interaction

vertices. We see that the coefficients of the logarithmic divergences are consistent with the

vanishing of the beta function and the Ward identity. In section 6.3, we determine some

1-loop counter terms by examining the energy corrections of the BPS states. We examine

the 1-loop energy corrections of the states that correspond to the operators on R4 which

are regarded as the integrable SO(6) spin chain. We show that the energy corrections are

actually given by the hamiltonian of the spin chain. In section 6.4, we determine some

couter terms in the truncated theories by examining the 1-loop energy corrections of the

BPS states. We find that the states viewed as the integrable SO(6) spin chain in the

original theory are also viewed as the same spin chain in the truncated theories.

6.1 Calculation of 1-loop diagrams

In the calculation of the 1-loop Feynman diagrams, we need the propagators, which are

read off from (4.14) as

〈XJM
AB (q)klX

J ′M ′
A′B′ (−q)k′l′〉 =

1

2
εABA′B′(−1)m−m̃δJJ ′δM −M ′δkl′δlk′

i

q2 − ωXJ
2 , (6.1)
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〈BJM (q)klBJ ′M ′(−q)k′l′〉 = (−1)m−m̃δJJ ′δM −M ′δkl′δlk′
i

4J(J + 1)
, (6.2)

〈AJMρ(q)klAJ ′M ′ρ′(−q)k′l′〉 = (−1)m−m̃+1δJJ ′δM −M ′δρρ′δkl′δlk′
i

q2 − ωAJ
2 , (6.3)

〈ψAJMκ(q)klψ
†
J ′M ′κ′A′(q)k′l′〉 = δJJ ′δMM ′δ

A
A′δκκ′

i(q − κωψJ )

q2 − ωψJ
2 , (6.4)

〈cJM (q)klc̄J ′M ′(−q)k′l′〉 = (−1)m−m̃δJJ ′δM −M ′δkl′δlk′
1

4J(J + 1)
, (6.5)

where q is conjugate to t.

(X-a) (X-b) (X-c) (X-d)

(X-e) (X-f)

Figure 2: Diagrams for the one-loop self-energy of XAB . The curly line represents the propagator

of Ai. The wavy line represents the propagator of A0. The solid line represents the propagator of

XAB . The dashed line represents the propagator of ψA.

Here we consider the 1-loop self-energy of XAB , which is (−i) times the 1-loop contri-

bution to the 1PI part of the truncated 2-point function 〈XJM
AB (q)klX

J ′M ′
A′B′ (−q)k′l′〉. We will

consider the self-energy of the other fields and the 1-loop corrections to some interaction

vertices in the next subsection. The six diagrams for the self-energy of XAB are shown in

Fig. 2. We illustrate our method by calculating one of the diagrams, (X − f). By using

the vertices in (4.15) and the propagator (6.4), we obtain an expression for this diagram.

4ig2Nδkl′δlk′
1

2
εABA′B′

∑

J1M1J2M2κ1κ2

×
∫

dp

2π


 i(p− κ1ω

ψ
J1

)

p2 − ωψJ1

2

i(−p+ q − κ2ω
ψ
J2

)

(−p+ q)2 − ωψJ2

2 F
J1 −M1κ1
J2M2κ2 J−MF

J2M2κ2
J1 −M1κ1 J ′−M ′

+
i(p− κ1ω

ψ
J1

)

p2 − ωψJ1

2

i(−p− q − κ2ω
ψ
J2

)

(p+ q)2 − ωψJ2

2 F
J1 −M1κ1
J2M2κ2 J ′−M ′F

J2M2κ2
J1 −M1κ1 J−M




= −8g2Nδkl′δlk′
1

2
εABA′B′

∑

J1M1J2M2κ1

FJ1M1κ1
J2M2κ1 J−MF

J2M2κ1
J1M1κ1 J ′−M ′

ωψJ1
+ ωψJ2

q2 − (ωψJ1
+ ωψJ2

)2
.

(6.6)
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Here we plug in the expression for F in (B.5), take summations over M1 and M2 using the

formulae (A.1) and (A.3). We also take a summation over κ1 and plug in the expression

for the 9− j symbol available in [24]. We eventually obtain

−16g2Nδkl′δlk′
1

2
εABA′B′(−1)m−m̃δJJ ′δM−M ′

×
∑

J1J2

(2J1 + 2J2 + 3)(J1 + J2 + J + 2)(J1 + J2 − J + 1)

(q2 − (2J1 + 2J2 + 3)3)(2J + 1)
, (6.7)

where J1 and J2 take non-negative half-integers (0, 1
2 , 1,

3
2 , · · · , ), and summations over J1

and J2 are taken such that they satisfy |J1 − J2| ≤ J ≤ J1 + J2. Because the summations

give rise to divergence, we must introduce a regularization. In the next subsection, we give

a method for regularization and calculate the divergent parts of the 1-loop diagrams.

In the following, we list unregularized expressions for all the diagrams in Fig. 2. The

1-loop self-energy of XAB takes the form

g2Nδkl′δlk′
1

2
εABA′B′(−1)m−m̃δJJ ′δM−M ′Π

X
J (q). (6.8)

We write down the contributions of each diagram to ΠX
J (q).

(X − a) =
∑

J1 6=0,J2M1M2

i(−1)m1−m̃1+m2−m̃2δ(0)

2J1(J1 + 1)
CJ −M J1M1 J2 −M2CJ′ −M ′ J1 −M1 J2M2 ,

(X − b) = −
∑

J1 6=0,J2M1M2

i(−1)m1−m̃1+m2−m̃2δ(0)

2J1(J1 + 1)
CJ −M J1M1 J2 −M2CJ′ −M ′ J1 −M1 J2M2

−1

4

∑

J1 6=0,J2

(2J1 + 1)
[
q2 + (2J2 + 1)2

]

J1(J1 + 1)(2J + 1)
{J, J1, J2} ,

(X − c) = −2
∑

J1

(2J1 + 1)(2J1 + 3)

2J1 + 2
,

(X − d) = −4
∑

J1J2

(2J1 + 2J2 + 3)(J + J1 + J2 + 2)(J1 + J2 − J + 1)(J − J1 + J2 + 1)(J + J1 − J2)

(2J + 1)(J2 + 1)2
[
q2 − (2J1 + 2J2 + 3)2

]

×{J, J1, J2}{J, J1, J2 + 1},

(X − e) = −5
∑

J1J2

2J2 + 1

2J + 1
{J, J1, J2} ,

(X − f) = −16
∑

J1J2

(2J1 + 2J2 + 3)(J1 + J2 + J + 2)(J1 + J2 − J + 1)

(2J + 1)
[
q2 − (2J1 + 2J2 + 3)2

] {J, J1, J2} (6.9)

where {J, J1, J2} represents the constraint |J1 − J2| ≤ J ≤ J1 + J2. Note that the terms

proportional to δ(0) cancel in (X − a) and (X − b) [21]. We will later need the 1-loop

on-shell self-energy for the lowest mode of XAB , which is obtained by plugging in q = 1

and J = 0 into (6.9).

(X − a) + (X − b) = −1

4

∑

J1 6=0

(2J1 + 1)(1 + (2J1 + 1)2)

J1(J1 + 1)
,
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(X − c) = −2
∑

J1

(2J1 + 1)(2J1 + 3)

2J1 + 2
,

(X − d) = 0,

(X − e) = −5
∑

J1

(2J1 + 1),

(X − f) = 4
∑

J1

(4J1 + 3). (6.10)

6.2 1-loop divergences and the Ward identity

All the expressions in (6.9) are divergent and must be regularized. As a regularization

method, we introduce a cut-off for the loop angular momentum. Again, as an example,

we explicitly regularize (X − f). We introduce the cut-off Λf for J1. (Of course, we could

introduce it for J2.) The suffix ‘f ’ indicates that the cut-off is the one for the loop of

ψAJMκ. Fig. 3 shows the region of the regularized summations over J1 and J2. We define

J1

ΛfJ

J J 2
=

J 1
−

J

J 2
=

J 1
+

J

J2

Figure 3: Region of the regularized summations over J1 and J2

new variables P = J1 + J2 and Q = J2− J1, which take integers for integer J and half odd

integers for half odd integer J . Then, we obtain the regularized expression for (X − f).

−16




2Λf−J∑

P=J

J∑

Q=−J
+

J∑

r=−J+1

J∑

Q=r

∣∣∣∣∣∣
P=2Λf+2r


 (2P + 3)(P + J + 2)(P − J + 1)

(q2 − (2P + 3)2)(2J + 1)
. (6.11)

It is difficult to calculate this analytically, however the divergent part is easily evaluated

as

8

2Λf−J∑

P=J

(P +
3

2
) + 16

J∑

r=−J+1

J∑

Q=r

Λf
2J + 1

+ 2(q2 − (2J + 1)2)

Λf−J∑

P=J

1

P

= 16Λ2
f + 32Λf + 2(q2 − (2J + 1)2) ln(2Λf ). (6.12)
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We list the divergent parts of the expressions in (6.9).

(X − a) + (X − b) = −2Λ2
s − 3Λs +

[
−q2 − 4

3
J(J + 1)− 1

]
log(2Λs),

(X − c) = −4Λ2
v − 10Λv + 2 log(2Λv),

(X − d) =
16

3
J(J + 1) log(2Λv),

(X − e) = −10Λ2
s − 15Λs,

(X − f) = 16Λ2
f + 32Λf + 2

[
q2 − (2J + 1)2

]
log(2Λf ), (6.13)

where Λv and Λs represent the cut-off for the loop of AJMρ and the cut-off for the loop of

XJM
AB or BJM , respectively. It is natural that Λs, Λv and Λf are the same order quantities,

so that we can set log(2Λs) = log(2Λv) = log(2Λf ) = log(2Λ) in the divergent parts. In

appendix D, we list the divergent parts of the 1-loop self-energies of the other fields and

those of the 1-loop corrections to some interaction vertices.

It should be remarked that all the 1-loop divergences here and in appendix D are local

ones, namely they can be canceled by the local counter terms. This property is crucial in

renormalizing the theory. In order to keep this property, one must introduce the cut-off

for the angular momentum of a certain internal propagator in each diagram. For instance,

one is not allowed to introduce the cut-offs for the angular momenta of several internal

propagators or divide a contribution of a diagram into several parts and introduce the

cut-off for the angular momentum of a different internal propagator in each part. Indeed,

in the above example, we have introduced the cut-off Λf only for J1. Of course, the finite

part as well as the divergent part in a 1-loop diagram generally depends on for which

angular momentum the cut-off is introduced. As discussed in the following, however, this

ambiguity does not matter. Our regularization method breaks the gauge symmetry and the

superconformal symmetry though it preserves the R × SO(4) symmetry. As in [25], these

symmetries would be recovered by introducing the counter terms that breaks the gauge

invariance or the superconformal invariance and making the fine-tuning for the coefficients

of these counter terms including the finite renormalization. Our gauge fixing also respects

only R× SO(4) symmetry. We have to consider, therefore, all the terms whose dimension

is less than or equal to four and which are invariant under R×SO(4), as the counter terms.

The counter terms quadratic in Ai, A0, c, XAB and ψA take the following forms.

Ai : αATr

(
1

2
(∂0Ai)

2 +
1

2
Ai∇2Ai −AiAi

)
+
βA
2

Tr(Ai∇2Ai + 2AiAi)

−γATr(AiAi), (6.14)

A0 : −αBTr

(
1

2
A0∇2A0

)
+
γB
2

Tr(A0)2, (6.15)

c : αcTr(−ic̄∇2c) + γCTr(c̄c), (6.16)

XAB : αXTr

(
1

2
∂0XAB∂0X

AB +
1

2
XAB∇2XAB − 1

2
XABX

AB

)

+
βX
2

Tr(XAB∇2XAB)− γX
2

Tr(XABX
AB), (6.17)

ψA : αψTr(iψ†A∂0ψ
A + iψ†Aσ

i∇iψA) + βψTr(iψ†Aσ
i∇iψA). (6.18)
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The first term in each line is absorbed by the wave function renormalization of the corre-

sponding field.

Let us see that our results of the 1-loop calculation are consistent with the vanishing

of the beta function, which is characteristic of conformal field theories. We immediately

see that the quadratic and linear divergences in (6.13) are absorbed in γX . The sum of

the logarithmic divergences in (6.13) is (q2 − ωXJ
2
) log(2Λ). This shows that the cut-off

dependent part of αX is

αX ∼ − log(2Λ)g2N. (6.19)

Eqs. (D.2), (D.4), (D.6) and (D.8) in appendix D show the divergent parts of the diagrams

for the 1-loop self-energies of Ai, A0, c and ψA, respectively. The quadratic and linear

divergences in (D.2) and (D.4) are absorbed in γA and γB, respectively, while the self-

energies of c and ψA contain only the logarithmic divergences. The sum of the logarithmic

divergences in (D.2) is 4
3(q2 − ωAJ

2
) log(2Λ). The sum of those in (D.4) vanishes. The sum

of those in (D.6) is − 8i
3 J(J + 1) log(2Λ). The sum of those in (D.8) is 2(q + κωψJ ) log(2Λ).

All of these logarithmic divergences are absorbed by the wave function renormalization.

We can determine the cut-off dependent parts of αA, αB , αc and αψ as follows:

αA ∼ −
4

3
log(2Λ)g2N, (6.20)

αB ∼ 0, (6.21)

αc ∼
2

3
log(2Λ)g2N, (6.22)

αψ ∼ −2 log(2Λ)g2N. (6.23)

As seen in (D.9), the diagrams for the 1-loop correction to the ghost-ghost-gauge inter-

action term are not divergent. The counter term proportional to Tr(∇ic̄[Ai, c]) does not

depend on the cut-off. This means together with (6.20) and (6.22) that the bare cou-

pling constant can coincide with the renormalized one, namely the beta function vanishes.

Similarly, the divergent parts of the diagrams for the 1-loop correction to the Yukawa in-

teraction term are listed in (D.9) and contain only the logarithmic divergences. The sum of

those divergences is 5
2 log(2Λ). The cut-off dependent part of the coefficient of the counter

term proportional to Tr(ψ†Aσ
2[XAB , (ψ†B)T ]) is −5

2 log(2Λ)g3N . This again means together

with (6.19) and (6.23) that the beta function vanishes.

In general, the coefficients of the logarithmic divergences do not depend on the details

of regularization, so that they respect the symmetries. This is consistent with the fact

that we were able to check the vanishing of the beta function through the logarithmic

divergences in our 1-loop calculation. Because our gauge choice only keeps the R × S 3,

it is difficult to examine the Ward identities for the superconformal symmetry. Here we

content ourselves to see that the coefficients of the 1-loop logarithmic divergences satisfy

the Ward identity for the gauge symmetry. As in [21], we consider the Ward identity in

the flat limit that relates the 1-loop self-energy Π̃ab of the gauge field with the coefficient

Φa of the Kac term in the 1-loop effective action, where Ka is the source added for the
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operator [QBRST , c].
6 It takes the form

∂aΠ̃ab + (∂2ηab − ∂a∂b)Φa = 0. (6.24)

As discussed above, the logarithmic divergent parts of Π̃ab and Φa should satisfy this

identity. As explained in [21], the logarithmic divergent parts of Π̃ab take the forms

Π̃div
ij = C((p2

0 − pkpk)δij + pipj)g
2N log(2Λ),

Π̃div
0i = Dpip0g

2N log(2Λ),

Π̃div
00 = (−C + 2D)pipig

2N log(2Λ), (6.25)

where C and D are certain numerical constants. The logarithmic divergent parts of Φa are

determined by the Ward identity (6.24) as

Φdiv
0 = 0, Φdiv

i = (−C +D)pig
2N log(2Λ). (6.26)

We saw above that C = 4
3 and −C + 2D = 0, namely D = 2

3 . In our case, Φ0 obviously

vanishes and Φi is determined by calculating the diagram in Fig. 4. Its divergent part is
∫
dtdΩ Tr (Ki∇ic)×

[
−2

3
g2N log(2Λ)

]
. (6.27)

This means −C + D = − 2
3 , which is indeed consistent with C = 4

3 and D = 2
3 . We can

also read off C and D for the pure Yang Mills sector by considering only (A−a) ∼ (A−f)

in Fig. 7 and (B − a) ∼ (B − c) in Fig. 8. The result is C = − 1
2 and D = − 7

6 for the pure

Yang Mills sector, which gives −C +D = − 2
3 again. This is consistent because Φa for the

pure Yang Mills sector is the same as that for N = 4 SYM. This consistency in pure Yang

Mills is actually shown in [21].

�
���

Figure 4: Diagram determining Φi. The curly line represents the propagator of Ai. The dotted

line represents the propagator of the ghost.

We close this subsection with an interesting observation. The quadratic and linear

divergences appear in (6.13), (D.2) and (D.4). If we set

Λv = Λs −
1

2
, Λf = Λs −

1

4
, (6.28)

those quadratic and linear divergences cancel and only the logarithmic divergences are left.

Furthermore, these constant shifts of the cut-offs enable us to reproduce the Casimir energy

6Here the longitudinal components of the gauge fields are included in the definition of Π̃ab.
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in the free theory as follows. When we rewrote the naive expression to the normal ordered

one in (4.22), we discarded the constant

N2

(
2
∑

J

(2J + 1)(2J + 3)
1

2
ωAJ + 6

∑

J

(2J + 1)2 1

2
ωXJ − 8

∑

J

(2J + 1)(2J + 2)
1

2
ωψJ

)
,(6.29)

where the first, second and third terms are the contributions of the gauge fields, the scalars

and the fermions, respectively. Each term in (6.29) is quartic divergent in the angular

momentum and must be regularized. If we set the upper end in the summation over J in

the first term at Λv, in the second term at Λs and in the third term at Λf and assume the

above constant shifts of the cut-offs (6.28), we remarkably obtain the finite value, 3
16N

2,

which is independent of Λs. This is equal to the Casimir energy and is reasonably obtained

as the zero point energy. The constant shifts of the cut-offs correspond to a complete

specification of the regularization scheme. The physical meaning of these shifts is unclear

at present and its understanding is an open problem. Here we only point out that these

shifts are obtained by requiring that the average of J and J̃ of the internal propagator

agree for all the fields. That we are left only with the logarithmic divergences after the

shifts of the cut-offs does not mean that we need no counter terms that break the gauge

invariance. We need in general the finite couter terms that break the gauge invariance even

in this situation.

6.3 Determination of counter terms and the SO(6) spin chain

In this subsection, we obtain the 1-loop dilatation operator for the operators (4.23) inN = 4

SYM on R4 by calculating the order g2N corrections to the energy of the states (4.24) in

N = 4 SYM on R× S3. One can also consider the states (4.24) in the truncated theories.

We show in the next subsection that the order g2N energy corrections of these states agree

with that in the original theory, namely these states in the truncated theories are also

regarded as the same integrable SO(6) spin chain.

For the above purpose, we need the ΠX
J=0(1), which is the coefficient of the on-shell

self-energy for the lowest mode. The determination of this value is equivalent to fixing

γX in (6.17), because the first and second terms in (6.17) vanishes for J = 0 and q = 1.

We determine this value by considering the BPS state. In addition, we similarly deter-

mine ΠA
J=0(2) and Πψ

J=0(−3
2). The determination of the former is equivalent to fixing γA

in (6.14), while that of Πψ
J=0(−3

2) is equivalent to fixing βψ in (6.18).

We consider the half-BPS state in the free theory, which corresponds to a special case

with l = 2 in (4.24):

2

N
Tr(α34†

00 α
34†
00 )|0〉, (6.30)

This state is mapped to the chiral primary operator Tr((X 34)2) on R4. The energy of this

state is 2. We also focus on the states that correspond to the descendant operators gen-

erated by the superconformal transformation caused by ηm+. Their forms are determined
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by (4.28) as
√

2

N
Tr(d3†

0Mα
34†
00 )|0〉,

√
2

N
Tr(d4†

0Mα
34†
00 )|0〉, (6.31)

1√
3N

Tr(d3†
0(± 1

2
0)
d4†

0(± 1
2

0)
+ 2a†0(±10)+α

34†
00 )|0〉, (6.32)

1√
6N

Tr(d3†
0( 1

2
0)
d4†

0(− 1
2

0)
+ d3†

0(− 1
2

0)
d4†

0( 1
2

0)
− 2
√

2a†0(00)+α
34†
00 )|0〉, (6.33)

1

N
Tr(d3†

0(± 1
2

0)
d3†

0(∓ 1
2

0)
)|0〉, 1

N
Tr(d4†

0(± 1
2

0)
d4†

0(∓ 1
2

0)
)|0〉, (6.34)

1√
2N

Tr(d3†
0( 1

2
0)
d4†

0(− 1
2

0)
− d3†

0(− 1
2

0)
d4†

0( 1
2

0)
)|0〉. (6.35)

The energy of (6.31) is 5
2 . The energy of (6.32), (6.33), (6.34) and (6.35) is 3. All the above

states are half-BPS, and their energy must not receive any correction when the interactions

are turned on. The BPS state (6.32) may mix with the non-BPS state whose energy is 3,
√

3

2

1

N
Tr(d3†

0(± 1
2

0)
d4†

0(± 1
2

0)
− a†0(±10)+α

34†
00 )|0〉, (6.36)

while the BPS state (6.33) may mix with the non-BPS state whose energy is 3,

1√
3N

Tr(d3†
0( 1

2
0)
d4†

0(− 1
2

0)
+ d3†

0(− 1
2

0)
d4†

0( 1
2

0)
+
√

2a†0(00)+α
34†
00 )|0〉. (6.37)

On the other hand, the BPS states (6.30), (6.31), (6.34) and (6.35) cannot mix with the

other states.

We need to develop the hamiltonian formalism for the interacting theory to calculate

the corrections to the energy. The canonical conjugate momenta obtained from (4.14),

(4.15) and (4.16) have the corrections proportional to g, compared with those in the free

energy, as follows.

PJMρ =
δI

δȦJMρ

= (−1)m−m̃+1ȦJ−Mρ − igDJ1M1 JMρ J2M2ρ2 [BJ1M1 , AJ2M2ρ2 ],

P JMAB =
δI

δẊAB
JM

= (−1)m−m̃ẊJ−M
AB − igCJ1M1 JM J2M2 [BJ1M1 , X

AB
J2M2

],

PJMκA = δI/δψ̇AJMκ = iψ†JMκA. (6.38)

We solve the equations of motion for the auxiliary fields BJM and cJM iteratively with
respect to g and obtain

B̂JM =
g

4J(J + 1)
Tr
[
(i(−1)m2−m̃2+1DJMJ1M1ρ1 J2−M2ρ2

[AJ1M1ρ1 , PJ2M2ρ2 ]

+i(−1)m2−m̃2CJMJ1M1 J2−M2
[XAB

J1M1
, P J2M2

AB ]+(−1)m−m̃FJ2M2κ2

J1M1κ1J−M{ψ
A
J1M1κ1

, ψ†J2M2κ2A
})
]

+O(g2),

ĉJM = 0. (6.39)

By substituting (6.38) and (6.39) into the hamiltonian,

H =
∑

JMρ

PJMρȦJMρ +
∑

JM

P JMAB Ẋ
AB
JM +

∑

JMκ

PJMκAψ̇
A
JMκ − L, (6.40)
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we obtain

H = H0 +Hint,

Hint = −L(1)
int +

∑

J 6=0,M

(−1)m−m̃

2
4J(J + 1)B̂J−M B̂JM +O(g3), (6.41)

where H0 takes the same form as that in the free theory, and L
(1)
int is given in (4.15).

In order to obtain the order g2N corrections to the energy, we calculate for the degen-

erate states, |Sn〉, the matrix elements

∆Eg
2N
mn = 〈Sm|Hint,4 +Hint,3

1−∑n |Sn〉〈Sn|
E0 −H0

Hint,3 +H1−loop
2 |Sn〉 ≡ 〈Sm|Hg2N

eff |Sn〉,(6.42)

where E0 is the unperturbed energy, and Hint,3 and Hint,4 is the 3-point and 4-point

interaction terms in Hint, respectively, while H1−loop
2 comes from the 1-loop counter terms

quadratic in the fields and is proportional to g2N .

We first calculate Hg2N
eff for the states (4.24). It is easy to see that the matrix elements

among the states (4.24) with fixed l are closed in the g2N corrections. As an example, let

us see the contribution of the 4-point interaction in (6.41),

HX
int = −g

2

4

∫
dΩTr([XAB , XCD][XAB , XCD])

= −g
2

2
Cj3j1j2Cj3j4j5(δABEF δ

CD
GH − δABGHδCDEF )Tr(Xj1

ABX
j2
CDX

EF
j4 XGH

j5 ), (6.43)

where we have introduced the abbreviated notations. j represents a pair of (J,M). −j
represents (J,−M), and j = 0 represents to (J = 0,M = 0) in the following. We substitute

XAB
j =

1√
2ωXJ

(αABj + (−1)m−m̃αAB†−j ) (6.44)

into (6.43). We take the Wick contractions to obtain the normal ordered form. After the

contractions, we are forced to set j = 0 for the creation and annihilation operators that are

left in the normal ordering, because we consider the matrix elements among (4.24). The

result is

HX
int

= −g
2

8
: Tr(2[αAB†0 , αCD†0 ][α0

AB , α
0
CD]

− [αAB†0 , α0
AB ][αCD†0 , α0

CD] + [αAB†0 , α0
CD][α0†

AB , α
CD
0 ]) :

+
5g2N

2

∑

j2j3

(−1)m2−m̃2

ωXJ2

Cj30j2
Cj3−j20 : Tr(αAB†0 α0

AB) :

+
15g2N3

4

∑

j1j2j3

(−1)m1−m̃1+m2−m̃2

ωXJ1
ωXJ2

Cj3j1j2Cj3−j2−j1 , (6.45)
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where α0
AB ≡ α

(JM)=(00)
AB , and we have used Cj300 = 1 in the first term in the righthand side.

We further evaluate the second term using
∑

M2M3
(−1)m2−m̃2Cj30j2

Cj3−j20 = (2J2 + 1)2δJ2J3

and obtain

5g2N

2

∑

J2

(2J2 + 1) : Tr(αAB†0 α0
AB) :, (6.46)

We see from (6.10) that the coefficient of the number operator in (6.46) is nothing but

− g2N
2ωXJ=0

= − g2N
2 times the contribution of (X − e) to ΠX

J=0(1). Indeed, the contribution

of the other 4-point interactions and the 3-point interactions to this coefficient correspond

to the contribution of the other diagrams in (6.10). Note that the contribution of (X −
a) + (X − b) comes from the second term of Hint in (6.41). Moreover, the contribution of

H1−loop
2 to this coefficient is γX

2 . The third term in (6.45) is a constant that contributes

equally to any 〈Sm|Hg2N
eff |Sn〉. The sum of such constants that all the interactions yield

must be zero due to the supersymmetry. We ignore these constants hereafter. As in [7],

we rewrite Tr([αAB†0 , α0
AB ][αCD†0 , α0

CD]) in the first term as

: Tr([αAB†0 , α0
AB ]T a) :: Tr(T a[αCD†0 , α0

CD]) : −2N : Tr(αAB†0 α0
AB) :, (6.47)

where T a is the generators of U(N). As shown in [7], the first term annihilates the

states (4.24). We eventually obtain for the states (4.23)

Hg2N
eff =

(
−g

2N

2
ΠX
J=0(1) +

1

2
γX −

g2N

4

)
: Tr(αAB†0 α0

AB) :

−g
2

8
: Tr(2[αAB†0 , αCD†0 ][α0

AB , α
0
CD] + [αAB†0 , α0

CD][α0†
AB , α

CD
0 ]) : . (6.48)

The expectation value of Hg2N
eff with respect to the state (6.30) must vanish, because it

is BPS and does not mix with other states. The second term in (6.48) annihilates the

state (6.30). Thus the coefficient of the number operator in the first term must vanish.

Namely, γX is determined as

γX = g2N

(
ΠX
J=0(1) +

1

2

)
, (6.49)

which in general depends on the cut-off and includes the finite renormalization.

The dilatation operator for the operators (4.23) on R4 [23, 26] is

D2 = − g
2
YM

32π2
: Tr

(
2[XAB , XCD][

d

dXAB
,

d

dXCD
] + [XAB ,

d

dXCD
][XAB ,

d

dXCD
]

)
: .(6.50)

Recalling g2 =
g2
YM
4π2 and comparing the remaining second term in (6.48) and (6.50), we find

that the matrix elements of the order g2N corrections to the energy of the states (4.24)

completely agree with those of the 1-loop dilatation operator for the operators (4.23), as

expected.
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Let us determine other counter terms. For the states (6.31),

Hg2N
eff =

g2N

4
: Tr(αAB†0 α0

AB) : +

(
g2NΠψ

J=0(−3

2
) +

3

2
βψ

)
: Tr(dA†m dmA) :

+2g2 : Tr(dC†m αAB†0 dmAα
0
BC) :, (6.51)

where dmA ≡ d0(m,0)A and m takes ± 1
2 . The states (6.31) do not mix with the other

states, either. The expectation value of H g2N
eff with respect to the states must vanish. It is

evaluated as

g2N

4
+

(
g2NΠψ

J=0(−3

2
) +

3

2
βψ

)
− g2N = 0, (6.52)

from which we obtain

βψ = −2g2N

3
Πψ
J=0(−3

2
) +

g2N

2
. (6.53)

For the states (6.33)∼(6.37),

Hg2N
eff

=
g2N

4
: Tr(αAB†0 α0

AB) : +
3g2N

4
: Tr(dA†m dmA) :

+

(
− g2N

2ωAJ=0

ΠA
J=0(2) +

γA

ωAJ=0

)
: Tr(a†mam) :

−g
2

4
: Tr(a†mα

AB†
0 amα

0
AB) : +

√
6g2(−1)m1+ 1

2C
1
2
−m1

1
2
m2 1m3

: Tr(dB†m2
dA†m1

α0
ABam3) : +(c.c.)

+
g2

4
: Tr(dA†−md

B†
m d−mAdmB−dA†m dB†−md−mAdmB+dA†m dB†m dmBdmA+dA†m dB†−mdmBd−mA) :,

(6.54)

where am = a0(1m)+ and m takes 0, ±1. The matrix elements of Hg2N
eff among (6.32)

and (6.36) form the 2× 2 matrix
(

2
3(χ− g2N)

√
2

3 (χ− g2N)√
2

3 (χ− g2N) 1
3(χ+ 8g2N)

)
, (6.55)

where

χ = −g
2N

4
ΠA
J=0(2) +

γA
2
. (6.56)

Those among (6.33) and (6.37) also form the same 2 × 2 matrix. In order for the BPS

energy not to receive any correction, one of the eigenvalues of this matrix must vanish.

This is true if and only if χ = g2N , namely, we obtain

γA = g2N

(
1

2
ΠA
J=0(2) + 2

)
. (6.57)

In this case, the other eigenvalue is 3g2N , and (6.32) and (6.33) are the eigenvector for

the zero eigenvalue, while (6.36) and (6.37) are the eigenvector for the other eigenvalue.

There is no correction to the BPS energy, and there is no mixing between the BPS and

non-BPS states. It is also easy to see that the matrix elements among the BPS states (6.34)

and (6.35), which have no mixing with the other states, vanish.
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6.4 1-loop analysis of the truncated theories

So far we have been examining the 1-loop corrections in the original theory. It is easy to

generalize the analysis in sections 6.1∼6.3 to the 1-loop perturbation theory around the

trivial vacua of the truncated theories. Consider the expression for a certain diagram in the

original theory. By keeping only the KK modes to be remained in each truncated theory,

in the external and internal propagators, one obtains the expression for the corresponding

diagram in the truncated theory. The plane wave matrix model is at least perturbatively

a finite theory, where no regularization is needed in the perturbative expansion, while

N = 4 SYM on R × S2 and N = 4 SYM on R× S3/Zk give rise to divergences and must

be regularized. In the perturbative expansion of the latters, as a regularization scheme,

introducing the cut-offs for the loop angular momenta should be useful as in the original

theory, although we have not explicitly calculated the divergent parts of the diagrams

in those theories which are regularized in such a way. At any rate, we can proceed the

following arguments assuming N = 4 SYM on R× S2 and N = 4 SYM on R× S3/Zk are

appropriately regularized in terms of a certain regularization scheme.

One can also develop the hamiltonian formalism for the truncated theories. In partic-

ular, considering the states in (4.24) and (6.30)∼(6.37) makes sence, because XAB
00 , ψ0M+

and A0M+ are remained in all the truncated theories although the correspondence with

the operators on R4 no longer exist. Furthermore, the truncated theories possess 16 super-

charges, and the states (6.30)∼(6.35) are also half-BPS, namely preserve 8 supercharges.

Their mass spectrum must not receive any quantum correction. The mixing of these states

with other states is the same as the original theory. The analysis of the g2N correction to

the energy of the states (4.24) and (6.30)∼(6.37) runs parallel to the one in the original

theory, which is given below (6.42). It is easy to see that (6.48), (6.51) and (6.54) hold

for the truncated theories, and γX , βψ and γA are determined as (6.49), (6.53) and (6.57),

respectively, in such a way that the supersymmetry is realized. Of course, the values of

ΠX
J=0(1), Πψ

J=0(−3
2) and ΠA

J=0(2) depend on which theory is considered. In particular, in

the plane wave matrix model, γX , βψ and γA are all zero, namely

ΠX
J=0(1) = −1

2
, Πψ

J=0(−3

2
) =

3

4
, ΠA

J=0(2) = −4 (6.58)

must hold. Indeed, from (6.10), we can calculate the contribution of each diagram to ΠX
J=0

as

(X − c) = −3

2
, (X − e) = −5, (X − f) = 6, (6.59)

The total of these values amounts to − 1
2 . Note that the diagrams (X−a), (X−b), (X−d)

and (X − g) do not exist in this theory. Similarly, we obtained Πψ
J=0(−3

2) and ΠA
J=0(2)

in (6.58) by calculating the diagrams in the plane wave matrix model.

The above arguments lead us to a following interesting conclusion. In the truncated

theories, the matrix elements of the g2N corrections to the energy of the states (4.23) are

mapped to the hamiltonian of the same integrable SO(6) spin chain that appear in the

original theory. Indeed, the authors of [27] verified this fact in the plane wave matrix model
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by direct calculation. In [27], the matrix elements of (6.51) in the plane wave matrix model

are also obtained by direct calculation, and are consistent with the above arguments.

As a side remark, we checked that as in the original theory by making shifts of the

cut-offs in (6.28) one can obtain the finite zero point energy in the truncated theories with

g = 0. Its value is zero for N = 4 SYM on R×S2 and 3
16kN

2 for N = 4 SYM on R×S3/Zk.

These two values are consistent, since in the k → ∞ limit N = 4 SYM on R × S3/Zk is

reduced to N = 4 SYM on R× S2 [1].

7. Time-dependent BPS solution

In this section, we examine a classical time-dependent BPS solution and the 1-loop effective

action around it in the original and truncated theories. In section 7.1, we construct the

time-dependent BPS solution of the original and truncated theories. In section 7.2, we

calculate the 1-loop effective action around it in the original theory, and in section 7.3 that

in the truncated theories.

7.1 Classical time-dependent BPS solution

We consider a configuration in which all the KK modes and matrix components except the

(1, 1) component of X00
34 vanish. Namely,

X00
34 = X12

00 = (X34)† = (X00
12 )† =




1
2ρ(t) eiη(t) 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0



. (7.1)

It is easy to see that this assumption is a consistent truncation in the original and truncated

theories. Under this assumption, the classical action becomes

Sc =

∫
dt

1

2
(ρ̇2 + ρ2η̇2 − ρ2). (7.2)

The canonical momenta are read off as

pρ =
δSc
δρ̇

= ρ̇,

l =
δSc
δη̇

= ρ2η̇. (7.3)

The angular momentum in the (6, 9) plane, l, is conserved and corresponds to the R charge

(Recall X34 = (X6 + iX9)/2). The energy possesses the BPS bound:

E =
1

2
pρ

2 +
l2

2ρ2
+

1

2
ρ2 ≥ |l| . (7.4)

When pρ = 0 and l2 = ρ4, the BPS bound is saturated. In this case, ρ =
√
|l| = const.

and η = ±t+ const.. We can set ρ =
√
l and η = t without loss of generality. That is, we
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Figure 5: BPS solution
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Figure 6: Non-BPS solution

consider the solution7

(X00
34 )11 =

1

2

√
l eit. (7.5)

For this solution, non-vanishing elements in (2.24) are

δε(λ
A
+)11 = 2(∂0(XAB)11 ∓ i(XAB)11)γ0ε−B ,

δε(λ−A)11 = 2(∂0(XAB)11 ± i(XAB)11)γ0εB+. (7.6)

The requirement δελ
A
+ = 0 and δελ−A = 0 leads to ε−3 = ε3+ = ε−4 = ε4+ = 0 for the upper

sign and ε−1 = ε1+ = ε−2 = ε2+ = 0 for the lower sign. The solution is, therefore, a half

BPS solution. It preserves 16 supercharges for the original theory and 8 supercharges for

the truncated theories. The BPS solution corresponds to a circular motion in the (6, 9)

plane (see Fig. 5) while generic non-BPS solutions correspond to elliptical motions (see

Fig. 6). The BPS solution is the classical counterpart of the lowest Landau level in the

Landau problem. The BPS solution is interpreted as the AdS giant graviton in the original

theory [11], and corresponds to a particular one of the spherical membrane solutions in the

plane wave matrix model, which were studied in [5].

7.2 1-loop effective action around the solution in the original SYM

We calculate the 1-loop effective action around the BPS solution in the original N = 4

SYM, which was obtained in the previous subsection. Following the background field

method, we make a substitution

(X34)kl →
1

2

√
leitδk1δl1 + (X34)kl,

(X12)kl →
1

2

√
le−itδk1δl1 + (X12)kl. (7.7)

7This solution on R × S3 is formally mapped to a vacuum with a nontrivial Higgs vev, (X34)11 = 1
2

√
l,

on R4. However, in this situation the correspondence between the two theories breaks down, so that it seem

rather nontrivial to examine the quantum correction around this solution.
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in the gauge-fixed action I and keep the second-order in all fields.8 Then we immediately

see that Iint are only written by the (1, k) and (k, 1) components, where k 6= 1, and as

far as the other components are concerned, I takes the same form as the free theory. We

can therefore forget the contribution of the other components. Moreover, the fields with

different k’s are decoupled and I takes the same form for each k. We can calculate the

effective action for a fixed k and multiply the result by N − 1 to obtain the final answer.

(In the ’t Hooft limit, the factor N − 1 can be replaced with N .) We omit the suffices for

the matrix components and absorb explicit time dependence into the fields:

(X34)1k →
1√
2
eitZ1, (X12)1k →

1√
2
e−itZ∗2 ,

(X24)1k →
1√
2
Y1, (X31)1k →

1√
2
Y ∗2 , (X14)1k →

1√
2
Y3, (X23)1k →

1√
2
Y ∗4 ,

(A0)1k → A0, (Ai)1k → Ai,

(ψ3)1k → e−
i
2
tϕ1, (ψ†T3 )∗1k → e−

i
2
tϕ2, (ψ4)1k → e−

i
2
tϕ3, (ψ†T4 )∗1k → e−

i
2
tϕ4,

(ψ1)1k → e
i
2
tφ5, (ψ†T1 )∗1k → e

i
2
tϕ6, (ψ2)1k → e

i
2
tϕ7, (ψ†T2 )∗1k → e

i
2
tϕ8. (7.8)

The resultant quadratic action is

I =
1

g2

∫
dtdΩ


∑

r=1,2

Z∗r (−∂2
0 − 2i∂0 +∇2 − l

2
)Zr +

l

2
(Z∗1Z

∗
2 + Z1Z2)

+

4∑

r=1

Y ∗r (−∂2
0 +∇2 − 1− l)Yr +A∗0(−∇2 + l)A0

+
√

2l(A0(Z∗1 − Z2) +A∗0(Z1 − Z∗2 )) + i

√
l

2
(A0(∂0Z

∗
1 + ∂0Z2)−A∗0(∂0Z1 + ∂0Z

∗
2 ))

+A∗i (−∂2
0 +∇2 − 2− l)Ai +

8∑

s=1

ϕ†s(i∂0 + iσi∇i)ϕs +
1

2

4∑

s=1

ϕ†sϕs −
1

2

8∑

s=5

ϕ†sϕs

+
√
l(ϕ†4σ

2ϕ†T1 + ϕT4 σ
2ϕ1 − ϕ†2σ2ϕ†T3 − ϕT2 σ2ϕ3

+ϕ†8σ
2ϕ†T5 + ϕT8 σ

2ϕ5 − ϕ†6σ2ϕ†T7 − ϕT6 σ2ϕ7)
]
. (7.9)

Note that the ghosts do not contribute to this calculation of the 1-loop effective action

because of the Coulomb gauge. We must also take into account the contribution of the

1-loop counter terms consisting only of XAB . We substitute the background in (7.7) into

them. As far as the counter terms quadratic in XAB (6.17) are concerned, there is the

contribution only from − γX
2 Tr(XABX

AB), which results in −
∫
dtγX2 l, where γX is given

in (6.49). We will see below that this contribution is consistently needed for vanishing

of the 1-loop effective action around the time-dependent BPS solution. Among possible

counter terms quartic in XAB , the single trace ones are

Tr([XAB , XCD][XAB , XCD]), (7.10)

Tr(XABX
ABXCDX

CD), (7.11)

8In this subsection, we rescale all the fields back by g.
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and the double trace ones are

1

N
Tr(XABX

AB)Tr(XCDX
CD),

1

N
Tr(XABXCD)Tr(XABXCD). (7.12)

(7.10) vanishes when the background is plugged in, while the double trace ones (7.12)

do not contribute in this case due to 1/N suppression. We can, therefore, determine the

coefficient of (7.11) from the requirement of vanishing of the 1-loop effective action.

We make a mode expansion for all fields in (7.9). We first integrate over A0 and obtain

new terms that are quadratic in Zr and Z∗r . After the redefinition, (−1)m−m̃ZJM2 → ZJM2 ,

the action concerning Zr and Z∗r becomes

1

g2

∫
dt

[
Z00

1
∗
(−∂2

0 − 2i∂0 −
1

2
l)Z00

1 + Z00
2
∗
(−∂2

0 + 2i∂0 −
1

2
l)Z00

2

+
1

2
l(Z00

1
∗
Z00

2
∗

+ Z00
1 Z00

2 )

]

+
∑

J 6=0,M

∫
dt

[
ZJM1

∗
(−(1−KJ)∂2

0 − 2i(1 − 2KJ ))∂0 − (ωXJ
2 − 1 +

1

2
l + 4KJ )ZJM1

+ZJ −M2 (−(1−KJ)∂2
0 + 2i(1 − 2KJ ))∂0 − (ωXJ

2 − 1 +
1

2
l + 4KJ )ZJ −M2

∗

+ZJM1
∗
(KJ∂

2
0 +

1

2
l + 4KJ)ZJ −M2

∗
+ ZJ −M2 (KJ∂

2
0 +

1

2
l + 4KJ)ZJM1

]
, (7.13)

where

KJ =
l

2

1

4J(J + 1) + l
. (7.14)

In order to evaluate the 1-loop effective action, we use a formula

Tr ln(∂2
0 − 2ip∂0 +m2) = i

∫
dt
√
p2 +m2. (7.15)

It is easy to see that the contribution of Z00
1 and Z00

2 to the effective action is

ΓZ0
eff = −g2N

∫
dt
√

4 + l, (7.16)

and the contribution of ZJM1 and ZJM2 ((JM) 6= (00)) is

ΓZeff = −g2N

∫
dt

∑

(JM)6=(00)

(
√

4J2 + l +
√

(2J + 2)2 + l )

= −g2N

∫
dt
∑

J 6=0

(2J + 1)2(
√

4J2 + l +
√

(2J + 2)2 + l ). (7.17)

We can evaluate the contribution of Yr, Ai and the fermions in a similar way. The contri-

bution of Yr is

ΓYeff = −4g2N

∫
dt
∑

J

(2J + 1)2
√

(2J + 1)2 + l. (7.18)
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The contribution of Ai is

ΓAeff = −2g2N

∫
dt
∑

J

(2J + 1)(2J + 3)
√

(2J + 2)2 + l. (7.19)

The contribution of the fermions is

ΓFeff = 4g2N

∫
dt
∑

J

(2J + 1)(2J + 2)(
√

(2J + 2)2 + l +
√

(2J + 1)2 + l ). (7.20)

We also have the contribution of the 1-loop counter term, − γX
2 Tr(XABX

AB),

Γ
c.t.(1)
eff = −g2N

∫
dt
l

2

(
ΠX
J=0(1) +

1

2

)
. (7.21)

Besides, there can be a contribution of the 1-loop counter term (7.11), which is quadratic

in l and denoted by Γ
c.t.(2)
eff . We denote the sum of all the contribution by Γeff :

Γeff = ΓZ0
eff + ΓZeff + ΓYeff + ΓAeff + ΓFeff + Γ

c.t.(1)
eff + Γ

c.t.(2)
eff . (7.22)

Let us see that the sum of (7.16)∼(7.20) vanishes. First, comparing the order l0

contribution in (7.16)∼(7.20) with (6.29), we find that it is nothing but the contribution of

the (1, k) and (k, 1) components of the fields to the zero point energy, and we can ignore it

here. Next, the order l1 contribution is evaluated as follows (we omit the common factor

lg2N
∫
dt):

ΓZ0
eff → −

1

4
,

ΓZeff → −
1

4

∑

J 6=0

(2J + 1)3

J(J + 1)
,

ΓYeff → −2
∑

J

(2J + 1),

ΓAeff → −
∑

J

(2J + 1)(2J + 3)

2J + 2
,

ΓFeff → 2
∑

J

(4J + 3). (7.23)

Comparing (7.23) with (6.10), we find that the total of (7.23) is equal to

1

2
ΠX
J=0(1) +

1

4
. (7.24)

This is canceled by (7.21). Namely, we find

the order l1 contribution in Γeff = 0. (7.25)

Note that the righthand sides in (7.23) except the first line have correspondence with those

in (6.10). If this correspondence also held for the first line in (7.23), the order l1 contribution
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in ΓZ0
eff would be − 1

2 rather than − 1
4 and the total of the righthand sides in (7.23) would

agree with 1
2ΠX

J=0(1). This agreement is naively anticipated because the background field

method usually gives the generating function of the 1PI diagrams. However, this is not

true in this case. Our result shows that in this case the loop expansion and the expansion

in l do not commute.

Finally the order l2 contribution in (7.17)∼(7.20) is logarithmically divergent, while

the contribution of orders higher than second in l are finite. At the second and higher

orders, therefore, one can shift J , over which the summation is taken. We set 2J = n and

shift n appropriately in (7.17)∼(7.20) to obtain the following expressions, where we focus

only on these orders in l. For the second order, the upper bounds of the summations are

Λs or Λv or Λf depending on the angular momentum of which field is summed. For higher

orders, they are set at infinity.

ΓZ0
eff + ΓZeff = −g2N

∫
dt

(∑

n=1

(n+ 1)2
√
n2 + l +

∑

n=0

(n+ 1)2
√

(n+ 2)2 + l

)
,

ΓYeff = −4g2N

∫
dt
∑

n=0

(n+ 1)2
√

(n+ 1)2 + l,

ΓAeff = −g2N

∫
dt

(∑

n=0

(n+ 1)(n+ 3)
√

(n+ 2)2 + l +
∑

n=1

(n− 1)(n+ 1)
√
n2 + l

)
,

ΓFeff = g2N

∫
dt

(∑

n=0

(2(n+ 1)(n+ 2)
√

(n+ 2)2 + l + 4(n+ 1)2
√

(n+ 1)2 + l)

+2
∑

n=1

n(n+ 1)
√
n2 + l

)
. (7.26)

A naive sum of the righthand sides in (7.26) is zero. This means that the sum of higher

orders in l of the righthand sides vanishes,

the lq contribution in Γeff = 0 (q ≥ 3), (7.27)

and the second order also vanishes if Λs, Λv and Λf differ only by constants. Otherwise,

we are left with certain finite contribution of the second order in l, which must be canceled

by the counter term (7.11). Thus we can determine the coefficient of (7.11). In particular,

in the case in which Λs, Λv and Λf differ only by constants, the coefficient is determined

as zero. It should be emphasized that the value of γX which is determined in section 6.3

is consistent with vanishing of the 1-loop effective action around the time-dependent BPS

solution. We conclude that if the counter term quartic in XAB is appropriately fixed,

Γeff = 0. (7.28)

7.3 1-loop effective action in the truncated theories

As in section 6.4, it is easy to obtain the 1-loop effective action around the time-dependent

BPS solution in the truncated theories by using the result in the original theory. What
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should be done is to keep only the modes remaining in the truncations in (7.16)∼(7.20).

Here we can make use of the multiplicities that we described in section 5.

We write down explicitly the expressions for ΓZ0
eff , ΓZeff , ΓYeff , ΓAeff , ΓFeff and Γ

c.t(1)
eff

in appendix E, where Γ
c.t(1)
eff is again the contribution from the counter term, − γX

2 ×
Tr(XABX

AB). Besides, there can be the contribution from the counter term (7.11) also

in the truncated theories. Those for the plane wave matrix model are given in (E.1). Of

course, in this case, all the expressions are finite and there is no contribution from the

counter terms. Indeed the sum of the expressions in (E.1) vanishes. In particular, the

total of the first order in l is again g2Nl(1
2ΠX

J=0(1) + 1
4), which vanishes by itself as seen

in (6.58). The expressions for N = 4 SYM on R × S2, N = 4 SYM on R × S3/Zk with

k even and N = 4 SYM on R × S3/Zk with k odd are given in (E.2), (E.3) and (E.4),

respectively. As for these three cases, one can ignore the zero-th order in l on the same

ground as the case of the original theory. The first order in l in each case vanishes if the

value of γX that was determined in section 6.4 is applied. The requirement of vanishing of

the second order in l fixes the coefficient of (7.11). It is easy to check that a naive sum in

each of (E.2), (E.3) and (E.4) vanishes (These expressions are counterparts of (7.26). This

means that the contribution of orders higher than second in l in (E.2), (E.3) and (E.4)

and, in addition, when Λs, Λv and Λf differ only by constants, no contribution from the

counter term (7.11) is needed and the coefficient of (7.11) is fixed to zero. To summarize,

the contribution of the first order and orders higher than second in l in 1-loop effective

action vanishes, and the coefficient of (7.11) should be fixed in such a way that the second

order in l vanishes.

8. Summary and discussion

In this paper we studied the dynamics of the original N = 4 SYM on R × S3 and the

truncated theories by making a harmonic expansion of the original theory on S 3. We

first developed the harmonic expansion on S3. We obtained the new compact formula for

the integral of the product of three harmonics (3.11). Then we carried out the harmonic

expansion of N = 4 SYM on R×S3 including the interaction terms. Second, we described

the consistent truncations of the original SYM to the theories with 16 supercharges. We

realized the truncations by keeping a part of the KK modes of the original theory. In

particular, we verified that quotienting by the subgroup U(1) of S̃U(2) indeed yields N = 4

SYM on R × S2, by comparing the modes of N = 4 SYM on R × S2 and those of the

orignal theory with the modes with m̃ = 0 kept ((5.6), (5.16) and (5.20)). In addition, we

explicitly constructed some of the non-trivial vacua of the N = 4 SYM on R×S 2 in terms

of the KK modes (5.29), which are a part of the solutions discussed in [6, 1]. Third, we

calculated the 1-loop diagrams in the orignal theory by introducing the cut-offs for loop

angular momenta. We saw that this cut-off scheme gave the correct coefficients of the

logarithmic divergences, which are consistent with vanishing of the beta function and the

Ward identity (6.24). We determined the counter terms in the original and the truncated

theories in the trivial vacuum, by using the non-renormalization theorem of energy of the

BPS states. This told us that the 1-loop effective hamiltonians of the SO(6) sector for
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the orignal and the truncated theories are the hamiltonian of the same integrable SO(6)

spin chain. Finally we examine the time-dependent BPS solution (7.1) in the original and

truncated theories, which are considered to correspond to the AdS giant graviton in the

original theory. We found that the 1-loop effective action around this solution vanishes

if the counter term quartic in XAB is appropriately fixed. This implied that the BPS

configuration is stable against the quantum corrections at the 1-loop level, as is expected.

There are some directions as extension of the present work. First, it is interesting to

consider the the non-BPS configuration (Fig. 6) for the original and the truncated theories.

In particular, in the case of the plane wave matrix model, a series of such investigations is

done [28 – 30]. It is also interesting to investigate the dynamics of N = 4 SYM on R×S 2 in

the non-trivial vacua (5.29). It would be also interesting to explore possibilities of another

solution for (5.24)-(5.26). In addition it would be nice to construct the vacua for N = 4

SYM on R × S3/Zk explicitly, to study the dynamics around those non-trivial vacua and

to find the electrostatic picture for the vacua of the truncated theories discussed in [1].

Another interesting future direction is thermodynamics of the original and the truncated

theories [12 – 14, 31 – 33]. We will work in these directions and report the result in the near

future. We expect our findings in this paper to give some insight to these subjects.
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A. Useful formulae for representations of SU(2)

In this appendix, we gather some useful formulae concerning the representation of SU(2),

most of which are found in [24]. The relationship between the Clebsch-Gordan coefficient

and the 3− j symbol is
(
J1 J2 J3

m1 m2 m3

)
= (−1)J3+m3+2J1

1√
2J3 + 1

CJ3m3
J1 −m1 J2 −m2

. (A.1)

The 3− j symbol possesses the following symmetries
(
J1 J2 J3

m1 m2 m3

)
=

(
J2 J3 J1

m2 m3 m1

)
=

(
J3 J1 J2

m3 m1 m2

)

= (−1)a+b+c

(
J1 J3 J2

m1 m3 m2

)
= (−1)a+b+c

(
J2 J1 J3

m2 m1 m3

)
= (−1)a+b+c

(
J3 J2 J1

m3 m2 m1

)
,
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(
J1 J2 J3

m1 m2 m3

)
= (−1)a+b+c

(
J1 J2 J3

−m1 −m2 −m3

)
. (A.2)

In section 6 and appendix D, we frequently use a summation formula for the 3− j symbol

∑

m1m2

(
J1 J2 J3

m1 m2 m3

)(
J1 J2 J3

′

m1 m2 m3
′

)
=

1

2J3 + 1
δJ3J3

′δm3m3
′ . (A.3)

In section 3, we use a formula for the 9− j symbol



a b c

d e f

g h j





= [(2c + 1)(2f + 1)(2g + 1)(2h + 1)]−
1
2 (2j + 1)−1

∑

αβγδεϕηµν

Ccγaα bβC
fϕ
dδ eεC

jν
cγ fϕC

gη
aα dδC

hµ
bβ eεC

jν
gη hµ.

(A.4)

B. Vertex coefficients

In this appendix, we give expressions for the vertex coefficients we defined in section 3.

These expressions are obtained by using the formula (3.11). In the following, Q ≡ J+ (1+ρ)ρ
2 ,

Q̃ ≡ J − (1−ρ)ρ
2 , U ≡ J + 1+κ

4 and Ũ ≡ J + 1−κ
4 . Suffices on these variables must be

understood appropriately.

CJ1M1
J2M2 J3M3

=

√
(2J2 + 1)(2J3 + 1)

2J1 + 1
CJ1m1
J2m2 J3m3

CJ1m̃1
J2m̃2 J3m̃3

, (B.1)

DJMJ1M1ρ1 J2M2ρ2
= (−1)

ρ1+ρ2
2

+1
√

3(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)

×





Q1 Q̃1 1

Q2 Q̃2 1

J J 0




CJmQ1m1 Q2m2

CJm̃
Q̃1m̃1 Q̃2m̃2

, (B.2)

EJ1M1ρ1 J2M2ρ2 J3M3ρ3

=
√

6(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)(2J3 + 1)(2J3 + 2ρ2
3 + 1)

×(−1)−
ρ1+ρ2+ρ3+1

2





Q1 Q̃1 1

Q2 Q̃2 1

Q3 Q̃3 1





(
Q1 Q2 Q3

m1 m2 m3

)(
Q̃1 Q̃2 Q̃3

m̃1 m̃2 m̃3

)
, (B.3)

FJ1M1κ1
J2M2κ2 JM

=
√

2(2J + 1)2(2J2 + 1)(2J2 + 2)





U1 Ũ1
1
2

U2 Ũ2
1
2

J J 0




CU1m1
U2m2 Jm

CŨ1m̃1

Ũ2m̃2 Jm̃
, (B.4)

GJ1M1κ1
J2M2κ2 JMρ = (−1)

ρ
2

√
6(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 2ρ2 + 1)

×





U1 Ũ1
1
2

U2 Ũ2
1
2

Q Q̃ 1




CU1m1
U2m2 Qm

CŨ1m̃1

Ũ2m̃2 Q̃m̃
. (B.5)
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C. Spherical harmonics on S2

In this appendix, we summarize the definitions and the properties of the spherical harmon-

ics on S2. We set the radius of S2 to µ−1. Construction of the spherical harmonics on S2

proceeds parallel to that of the spherical harmonics on S3. We again identify S2 with a coset

space: S2 = G/H = SO(3)/SO(2). The generators of G = SO(3) are J1, J2 J3, and the

generator of H = SO(2) is J3. The representative element of G/H is Υ′(Ω′) = e−iϕJ3e−iθJ2 ,

where Ω′ = (θ, ϕ) is the polar coordinates of S2. The spin L spherical harmonics is defined

by

YLqJm = nLJ 〈Jq|Υ′
−1

(Ω′)|Jm〉, (C.1)

where J takes L,L+ 1, L + 2, · · · while q takes L or −L, and nLJ =
√

2J+1
2 for L 6= 0 and

n0
J =
√

2J + 1. The spin L spherical harmonics has the following properties.

∫
dΩ′

∑

q=±L
(YLqJ1m1

)∗YLqJ2m2
= δJ1J2δm1m2 ,

∫
dΩ′(YL1q2+q3

J1m1
)∗YL2q2

J2m2
YL3q3
J3m3

=
nL1
J1
nL2
J2
nL3
J3

2J1 + 1
CJ1q2+q3
J2q2 J3q3

CJ1m1
J2m2 J3m3

,

(YLqJm)∗ = (−1)q+mYL−qJ −m,

∇iYLqJm = nLJ 〈Jq|(−iµ)JiΥ
′−1

(Ω′)|Jm〉, for i = 1, 2,

∇2YLqJm = µ2(−J(J + 1) + q2)YLqJm. (C.2)

The scalar spherical harmonics is defined by YJm = Y00
Jm (J = 0, 1, 2, · · ·). The spinor

spherical harmonics is defined by YJmα = Y
1
2
α

Jm (J = 1
2 ,

3
2 , . . .). The transverse vector

spherical harmonics is defined by Y t
Jmi=1 = 1√

2
(−Y11

Jm + Y1−1
Jm ) and Y t

Jmi=2 = − i√
2
(Y11

Jm +

Y1−1
Jm ) (J = 1, 2, . . .) while the longitudinal vector spherical harmonics is defined by Y l

Jmi =

εijY
t
Jmj (J = 1, 2, . . .). These spherical harmonics satisfy the following identities.

∇2YJm = −µ2J(J + 1)YJm,

∇2YJmα = −µ2(J(J + 1)− 1

4
)YJmα,

∇2Y t,l
Jmi = −µ2(J(J + 1)− 1)Y t,l

Jmi,

(∇1 ± i∇2)YJm± 1
2

= −iµ(J +
1

2
)YJm∓ 1

2
,

∇iY t
Jmi = 0,

∇iY l
Jmi = −µ

√
J(J + 1)YJm,

Y l
Jmi =

1

µ
√
J(J + 1)

∇iYJm,

εij∇iY t
Jmj = −µ

√
J(J + 1)YJm,

εij∇iY l
Jmj = 0. (C.3)
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D. 1-loop divergences

In this appendix, we give the 1-loop diagrams and the divergent part of each diagram. The

nine diagrams for the 1-loop self-energy of Ai which is (−i) times the 1-loop contribution to

the 1PI part of the truncated 2-point function 〈AJMρ(q)klAJ ′M ′ρ′(−q)k′l′〉 are shown in Fig.

7. The six diagrams for the 1-loop self-energy of A0 which is (−i) times the 1-loop contribu-

tion to the 1PI part of the truncated 2-point function〈BJM (q)klBJ ′M ′(−q)k′l′〉 are shown in

figure 8. The diagram for the 1-loop self-energy of c which is (−i) times the 1-loop contribu-

tion to the 1PI part of the truncated 2-point function 〈cJM (q)klc̄J ′M ′(−q)k′l′〉 are shown in

figure 9. The three diagram for the 1-loop self-energy of ψA which is (−i) times the 1-loop

contribution to the 1PI part of the truncated 2-point function 〈ψAJMκ(q)klψ
†
J ′M ′κ′A′(q)kl′〉

are shown in figure 10. The two diagrams for the 1-loop correction to the ghost-ghost-

gauge interaction term which is (−i) times the 1-loop contribution to the 1PI part of the

truncated three point function 〈AJMρ(q)klcJ ′M ′(q
′)K′l′ c̄J ′′M ′′(q′′)k′′l′′〉 are shown in figure

11. The five diagrams for the one-loop correction to the Yukawa interaction term which is

(−i) times the 1-loop contribution to the 1PI part of the truncated three point function

〈(XJM
AB (q))klψ

A′
J ′ (q

′)k′l′ψB
′

J ′′(q
′′)k′′l′′〉, are shown in figure 12.

The 1-loop self-energy of Ai takes the form

g2Nδkl′δlk′(−1)m−m̃+1δJJ ′δM−M ′δρρ′Π
A
J (q). (D.1)

We list the the divergent part in the contribution of each diagram to ΠA
J (q).

(A− a) =
∑

J1,J2 6=0,M1M2

2iδ(0)

4
√
J1(J1 + 1)J2(J2 + 1)

DJ2M2 J1M10J−MρDJ1−M1 J2−M20J′−M ′ρ′ ,

(A− b) =
∑

J1,J2 6=0,M1M2

[
− 2iδ(0)

4
√
J1(J1 + 1)J2(J2 + 1)

DJ2M2 J1M10 J−MρDJ1−M1 J2−M20J′−M ′ρ′

+
2iδ(0)

4J2(J2 + 1)
DJ2M2 J1M10J−MρDJ2−M2 J1−M10 J′−M ′ρ′

]
,

(A− c) =
∑

J2 6==0,J1M1M2

−2iδ(0)

4J2(J2 + 1)

[
DJ2M2 J−Mρ J1M10DJ2−M2 J′−M ′ρ′ J1−M10

+DJ2M2 J−Mρ J1M1±DJ2−M2 J′−M ′ρ′ J1−M1±

]
,

(A− d) =
∑

J2 6==0,J1M1M2

2iδ(0)

4J2(J2 + 1)
DJ2M2 J1M1±,J−MρDJ2−M2 J′−M ′−ρ′J5M5±

−4

3
Λ2
s − 2Λs −

[
2

3
q2 +

2

5
(2J + 2)2 +

2

5

]
log(2Λ),

(A− e) = −8

3
Λ2
v −

20

3
Λv +

4

3
log(2Λ),

(A− f) =
4

3
Λ2
v +

10

3
Λv +

[
q2

6
+

18

5
(J + 1)2 − 14

15

]
log(2Λ),

(A− g) = −12Λ2
s − 18Λs,

(A− h) = 4Λ2
s + 6Λs +

1

2

[
q2 − (2J + 2)2

]
log(2Λ),

(A− i) =
32

3
Λ2
f +

64

3
Λf +

4

3

[
q2 − (2J + 2)2

]
log(2Λ). (D.2)
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Note that the terms proportional to δ(0) cancel among (A− a) ∼ (A− d).

The 1-loop self-energy of A0 takes the form

g2Nδkl′δlk′(−1)m−m̃δJJ ′δM−M ′Π
B
J (q). (D.3)

We list the the divergent part in the contribution of each diagram to ΠB
J (q).

(B − a) = 4Λ2
v + 10Λv − 2 log(2Λ),

(B − b) = −4Λ2
v − 10Λv +

[
2 +

10

3
J(J + 1)

]
log(2Λ),

(B − c) = −32

3
J(J + 1) log(2Λ),

(B − d) = 12Λ2
s + 18Λs,

(B − e) = −12Λ2
s − 18Λs + 2J(J + 1) log(2Λ),

(B − f) =
16

3
J(J + 1) log(2Λ). (D.4)

The 1-loop self-energy of c takes the form

g2Nδkl′δlk′(−1)m−m̃δJJ ′δM−M ′Π
c
J(q). (D.5)

The divergent part in the contribution of the diagram to Πc
J(q) is

(G− a) = 4iJ(J + 1)

(
−2

3

)
log(2Λ). (D.6)

The 1-loop self-energy of ψA takes the form

g2Nδkl′δlk′δJJ ′δMM ′δκκ′δ
A
A′Π

ψ
J (q). (D.7)

We list the the divergent part in the contribution of each diagram to Πψ
J (q).

(F − a) =

(
1

2
q − 1

6
κ(2J +

3

2
)

)
log(2Λ),

(F − b) =

(
2

3
κ(2J +

3

2
)

)
log(2Λ),

(F − c) =
3

2

(
q + κ(2J +

3

2
)

)
log(2Λ). (D.8)

The two diagrams for the one-loop correction to the ghost-ghost-gauge interaction term

vanish:

(GV − a) = 0, (GV − b) = 0. (D.9)

The 1-loop correction to the Yukawa interaction term takes the form

2ig3NδA
′B′

AB

(
δkl′δk′l′′δk′′l(−1)m

′−m̃′+κ′
2 F J

′′M ′′κ′′
J ′−M ′κ′ J3−M3

+ δkl′′δk′lδk′′l′(−1)m
′′−m̃′′+κ′′

2 F J
′M ′κ′

J ′′−M ′′κ′′ J3−M3

)

×2πδ(q + q′ + q′′)ΓYJJ ′J ′′(q
′, q′′). (D.10)
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We list the the divergent part in the contribution of each diagram to ΓYJJ ′J ′′(q
′, q′′).

(Y − a) =
1

2
log(2Λ),

(Y − b) =
1

2
log(2Λ),

(Y − c) =
1

2
log(2Λ),

(Y − d) = log(2Λ),

(Y − e) = 0. (D.11)

(A-a) (A-b) (A-c) (A-d)

(A-e) (A-f)

(A-g)

J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

(A-h)

J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

(A-i)

Figure 7: Diagrams for the one-loop self energy of Ai. The curly line represents the propagator

of Ai. The wavy line represents the propagator of A0. The dotted line represents the propagator

of the ghost. The solid line represents the propagator of XAB . The dashed line represents the

propagator of ψA.

E. 1-loop effective action in the truncated theories

In this appendix, we give the expressions for the 1-loop effective action around the time-

dependent BPS solution in the truncated theories. In the expressions, we omit the factor

g2N
∫
dt to make them compact.

The 1-loop effective action in the plane-wave matrix model is

ΓZ0
eff = −

√
4 + l,

ΓYeff = −4
√

1 + l,

ΓAeff = −3
√

4 + l,

ΓFeff = 4(
√

4 + l +
√

1 + l ). (E.1)
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(B-b)

(B-c)

(B-d) (B-e) (B-f)

Figure 8: Diagrams for the one-loop self energy of A0. The curly line represents the propagator

of Ai. The solid line represents the propagator of XAB . The dashed line represents the propagator

of ψA.
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(G-a)

Figure 9: Diagram for the self-energy of the ghost. The curly line represents the propagator of

Ai. The dotted line represents the propagator of the ghost.

J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

(F-a)

J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

(F-b)

J
H
E
P
1
0
(
2
0
0
6
)
0
0
7

(F-c)

Figure 10: Diagrams for the one-loop self energy of ψA. The curly line represents the propagator

of Ai. The wavy line represents the propagator of A0. The solid line represents the propagator of

XAB . The dashed line represents the propagator of ψA.

The 1-loop effective action in N = 4 SYM on R× S2 is

ΓZ0
eff = −

√
4 + l,

ΓZeff = −
∑

J∈Z>0

(2J + 1)(
√

4J2 + l +
√

(2J + 2)2 + l ),

ΓYeff = −4
∑

J∈Z≥0

(2J + 1)
√

(2J + 1)2 + l,

ΓAeff = −
∑

J∈Z≥0

((2J + 3)
√

(2J + 2)2 + l + (2J + 1)
√

(2J + 2)2 + l ),
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(GV-a) (GV-b)

Figure 11: Diagrams for the one-loop correction to the ghost-ghost-gauge interaction vertex. The

curly line represents the propagator of Ai. The dotted line represents the propagator of the ghost.

(Y-a) (Y-b) (Y-c) (Y-d)

(Y-e)

Figure 12: Diagrams for the one-loop correction to the Yukawa interaction. The curly line repre-

sents the propagator of Ai. The wavy line represents the propagator of A0. The solid line represents

the propagator of XAB . The dashed line represents the propagator of ψA.

ΓFeff = 2
∑

J∈Z≥0

(2J + 2)(
√

(2J + 2)2 + l +
√

(2J + 1)2 + l )

+2
∑

J∈ 1
2

+Z≥0

(2J + 1)(
√

(2J + 2)2 + l +
√

(2J + 1)2 + l ),

Γc.t.eff = −g
2Nl

2

(
ΠX
J=0(1) +

1

2

)
. (E.2)

The 1-loop effective action in N = 4 SYM on R× S3/Zk with k even is

ΓZ0
eff = −

√
4 + l,

ΓZeff = −


 ∑

n∈Z>0

k
2
−1∑

v=0

+

k
2
−1∑

v=1

∣∣∣∣∣∣
n=0




(kn+ 2v + 1)(2n + 1)(
√

(kn+ 2v)2 + l +
√

(kn+ 2v + 2)2 + l ),
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ΓYeff = −4
∑

n∈Z≥0

k
2
−1∑

v=0

(kn+ 2v + 1)(2n+ 1)
√

(kn+ 2v + 1)2 + l,

ΓAeff = −
∑

n∈Z≥0

k
2
−1∑

v=0

(kn+ 2v + 3)(2n+ 1)
√

(kn+ 2v + 2)2 + l

−


 ∑

n∈Z>0

k
2
−1∑

v=0

+

k
2
−1∑

v=1

∣∣∣∣∣∣
n=0


 (kn+ 2v − 1)(2n+ 1)

√
(kn+ 2v)2 + l,

ΓFeff = 2
∑

n∈Z≥0

k
2
−1∑

v=0

(kn+ 2v + 2)(2n + 1)(
√

(kn+ 2v + 2)2 + l +
√

(kn+ 2v + 1)2 + l )

+2


 ∑

n∈Z>0

k
2
−1∑

v=0

+

k
2
−1∑

v=1

∣∣∣∣∣∣
n=0


 (kn+ 2v)(2n + 1)

(
√

(kn+ 2v + 1)2 + l +
√

(kn+ 2v)2 + l ),

Γc.t.eff = −g
2Nl

2

(
ΠX
J=0(1) +

1

2

)
. (E.3)

The 1-loop effective action in N = 4 SYM on R× S3/Zk with k odd is

ΓZ0
eff = −

√
4 + l,

ΓZeff = −


 ∑

n∈Z>0

k
2
− 1

2∑

v=0

+

k
2
− 1

2∑

v=1

∣∣∣∣∣∣
n=0




(kn+ 2v + 1)(n+ 1)(
√

(kn+ 2v)2 + l +
√

(kn+ 2v + 2)2 + l )

−
∑

n∈Z≥0

k
2
− 1

2∑

v=1

(kn+ 2v)n(
√

(kn+ 2v − 1)2 + l +
√

(kn+ 2v + 1)2 + l ),

ΓYeff = −4
∑

n∈Z≥0

k
2
− 1

2∑

v=0

(kn+ 2v + 1)(n+ 1)
√

(kn+ 2v + 1)2 + l

−4
∑

n∈Z≥0

k
2
− 1

2∑

v=1

(kn+ 2v)n
√

(kn+ 2v)2 + l,

ΓAeff = −
∑

n∈Z≥0

k
2
− 1

2∑

v=0

(kn+ 2v + 3)(n+ 1)
√

(kn+ 2v + 2)2 + l

−


 ∑

n∈Z>0

k
2
− 1

2∑

v=0

+

k
2
− 1

2∑

v=1

∣∣∣∣∣∣
n=0


 (kn+ 2v − 1)(n+ 1)

√
(kn+ 2v)2 + l
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−
∑

n∈Z≥0

k
2
− 1

2∑

v=1

((kn+ 2v + 2)n
√

(kn+ 2v + 1)2 + l

+(kn+ 2v − 2)n
√

(kn+ 2v − 1)2 + l ),

ΓFeff = 2
∑

n∈Z≥0

k
2
− 1

2∑

v=0

(kn+ 2v + 2)(n+ 1)(
√

(kn+ 2v + 2)2 + l +
√

(kn+ 2v + 1)2 + l )

+2


 ∑

n∈Z>0

k
2
− 1

2∑

v=0

+

k
2
− 1

2∑

v=1

∣∣∣∣∣∣
n=0




(kn+ 2v)(n+ 1)(
√

(kn+ 2v + 1)2 + l +
√

(kn+ 2v)2 + l )

+2
∑

n∈Z≥0

k
2
− 1

2∑

v=1

((kn+ 2v + 1)n(
√

(kn+ 2v + 1)2 + l +
√

(kn+ 2v)2 + l )

+(kn+ 2v − 1)n(
√

(kn+ 2v)2 + l +
√

(kn+ 2v − 1)2 + l )),

Γc.t.eff = −g
2Nl

2

(
ΠX
J=0(1) +

1

2

)
. (E.4)
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